A NEW QUANTITY IN RIEMANN-FINSLER GEOMETRY

被引:1
|
作者
Mo, Xiaohuan [1 ]
Shen, Zhongmin [2 ]
Liu, Huaifu [3 ]
机构
[1] Peking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R China
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[3] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
基金
美国国家科学基金会;
关键词
SCALAR FLAG CURVATURE; RANDERS METRICS;
D O I
10.1017/S0017089512000225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we study a new Finslerian quantity (C) over cap defined by the Riemannian curvature. We prove that the newFinslerian quantity is a non-Riemannian quantity for a Finsler manifold with dimension n = 3. Then we study Finsler metrics of scalar curvature. We find that the (C) over cap -curvature is closely related to the flag curvature and the H-curvature. We show that (C) over cap -curvature gives, a measure of the failure of a Finsler metric to be of weakly isotropic flag curvature. We also give a simple proof of the Najafi-Shen-Tayebi' theorem.
引用
下载
收藏
页码:637 / 645
页数:9
相关论文
共 50 条