Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis

被引:280
|
作者
Yin, Huayi [1 ]
Mao, Xuhui [1 ]
Tang, Diyong [1 ]
Xiao, Wei [1 ]
Xing, Luru [1 ]
Zhu, Hua [1 ]
Wang, Dihua [1 ]
Sadoway, Donald R. [2 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
PHOENIX LANDING SITE; HEXAVALENT CHROMIUM; ALKALI CARBONATES; DIOXIDE; REDUCTION; CATALYSIS; COPPER; WATER; ACID; MARS;
D O I
10.1039/c3ee24132g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A molten salt electrochemical system comprising a eutectic mixture of Li-Na-K carbonates, a Ni cathode, and a SnO2 inert anode is proposed for the capture and electrochemical conversion of CO2. It is demonstrated that CO2 can be effectively captured by molten carbonates, and subsequently electrochemically split into amorphous carbon on the cathode, and oxygen gas at the anode. The carbon materials generated at the cathode exhibit high BET surface areas of more than 400 m(2) g(-1) and as such, represent value-added products for a variety of applications such as energy storage and pollutant adsorption. In the carbonate eutectic (500 degrees C), the presence of Li2CO3 is shown to be required for the deposition of carbon from the melt, wherein O-2(-) or Li2O serves as the intermediate for CO2 capture and electrochemical conversion. SnO2 proved to be an effective anode for the electrochemical evolution of oxygen. Electrochemical reactions were found to proceed at relatively high current efficiencies, even though the current densities exceed 50 mA cm(-2). The intrinsic nature of alkaline oxides for CO2 capture, the conversion of CO2 to value-added products, and the ability to drive the process with renewable energy sources such as solar power, enables the technology to be engineered for high flux capture and utilization of CO2.
引用
收藏
页码:1538 / 1545
页数:8
相关论文
共 50 条
  • [41] Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products (vol 1, pg 18, 2013)
    Hu, Boxun
    Guild, Curtis
    Suib, Steven L.
    JOURNAL OF CO2 UTILIZATION, 2013, 2 : 64 - 64
  • [42] Novel technologies for CO2 conversion to renewable fuels, chemicals, and value-added products
    Awogbemi, Omojola
    Desai, Dawood A.
    DISCOVER NANO, 2025, 20 (01)
  • [43] Abiotic–Biological Hybrid Systems for CO2 Conversion to Value-Added Chemicals and Fuels
    Jiansheng Li
    Yao Tian
    Yinuo Zhou
    Yongchao Zong
    Nan Yang
    Mai Zhang
    Zhiqi Guo
    Hao Song
    Transactions of Tianjin University, 2020, 26 (04) : 237 - 247
  • [44] Hierarchical porous nitrogen-doped carbon supported MgO as an excellent composite for CO2 capture at atmospheric pressure and conversion to value-added products
    Gbe, Jean-Louis K.
    Ravi, Krishnan
    Singh, Manpreet
    Neogi, Subhadip
    Grafoute, M.
    Biradar, Ankush, V
    JOURNAL OF CO2 UTILIZATION, 2022, 65
  • [45] Direct conversion of CO2 into value-added C2+hydrocarbons with high selectivity
    Gao, Peng
    Dang, Shanshan
    Cui, Xu
    Wang, Hui
    Zhong, Liangshu
    Wei, Wei
    Sun, Yuhan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [46] Coupling electrochemical CO2 conversion with CO2 capture
    Sullivan, Ian
    Goryachev, Andrey
    Digdaya, Ibadillah A.
    Li, Xueqian
    Atwater, Harry A.
    Vermaas, David A.
    Xiang, Chengxiang
    NATURE CATALYSIS, 2021, 4 (11) : 952 - 958
  • [47] Coupling electrochemical CO2 conversion with CO2 capture
    Ian Sullivan
    Andrey Goryachev
    Ibadillah A. Digdaya
    Xueqian Li
    Harry A. Atwater
    David A. Vermaas
    Chengxiang Xiang
    Nature Catalysis, 2021, 4 : 952 - 958
  • [48] Porous carbon materials for CO2 capture, storage and electrochemical conversion
    Kim, Changmin
    Talapaneni, Siddulu Naidu
    Dai, Liming
    MATERIALS REPORTS: ENERGY, 2023, 3 (02):
  • [49] Co-Conversion of CO2 and CH4 to High Value-Added Oxygenated Chemicals
    Hu, Lifang
    Wang, Jun
    Zhu, Jichao
    Zheng, Xianyun
    He, Xin
    He, Jie
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 96 (14) : 3049 - 3069
  • [50] Co-Conversion of CO2 and CH4 to High Value-Added Oxygenated Chemicals
    Lifang Hu
    Jun Wang
    Jichao Zhu
    Xianyun Zheng
    Xin He
    Jie He
    Russian Journal of Physical Chemistry A, 2022, 96 : 3049 - 3069