Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis

被引:280
|
作者
Yin, Huayi [1 ]
Mao, Xuhui [1 ]
Tang, Diyong [1 ]
Xiao, Wei [1 ]
Xing, Luru [1 ]
Zhu, Hua [1 ]
Wang, Dihua [1 ]
Sadoway, Donald R. [2 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
PHOENIX LANDING SITE; HEXAVALENT CHROMIUM; ALKALI CARBONATES; DIOXIDE; REDUCTION; CATALYSIS; COPPER; WATER; ACID; MARS;
D O I
10.1039/c3ee24132g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A molten salt electrochemical system comprising a eutectic mixture of Li-Na-K carbonates, a Ni cathode, and a SnO2 inert anode is proposed for the capture and electrochemical conversion of CO2. It is demonstrated that CO2 can be effectively captured by molten carbonates, and subsequently electrochemically split into amorphous carbon on the cathode, and oxygen gas at the anode. The carbon materials generated at the cathode exhibit high BET surface areas of more than 400 m(2) g(-1) and as such, represent value-added products for a variety of applications such as energy storage and pollutant adsorption. In the carbonate eutectic (500 degrees C), the presence of Li2CO3 is shown to be required for the deposition of carbon from the melt, wherein O-2(-) or Li2O serves as the intermediate for CO2 capture and electrochemical conversion. SnO2 proved to be an effective anode for the electrochemical evolution of oxygen. Electrochemical reactions were found to proceed at relatively high current efficiencies, even though the current densities exceed 50 mA cm(-2). The intrinsic nature of alkaline oxides for CO2 capture, the conversion of CO2 to value-added products, and the ability to drive the process with renewable energy sources such as solar power, enables the technology to be engineered for high flux capture and utilization of CO2.
引用
收藏
页码:1538 / 1545
页数:8
相关论文
共 50 条
  • [21] The Effect of Molten Salt Composition on Carbon Structure: Preparation of High Value-Added Nano-Carbon Materials by Electrolysis of Carbon Dioxide
    Cheng, Yi
    Li, Liangxing
    Xue, Lirong
    Wu, Jiahang
    Wang, Jingsong
    Huang, Xilin
    Liao, Chunfa
    NANOMATERIALS, 2025, 15 (01)
  • [22] Modeling and optimization of proton-conducting solid oxide electrolysis cell: Conversion of CO2 into value-added products
    Namwong, Lawit
    Authayanun, Suthida
    Saebea, Dang
    Patcharavorachot, Yaneeporn
    Arpornwichanop, Amornchai
    JOURNAL OF POWER SOURCES, 2016, 331 : 515 - 526
  • [23] Recent progress and challenges of photocatalytic CO2 conversion into value-added multi-carbon products
    Li, Chunmei
    Wang, Jilong
    Tong, Lei
    Wang, Yun
    Zhang, Pingfan
    Zhu, Mingshan
    Dong, Hongjun
    COORDINATION CHEMISTRY REVIEWS, 2024, 502
  • [24] Hydrothermal Conversion of CO2 into Value-Added Products: A Potential Technology for Improving Global Carbon Cycle
    Jin, Fangming
    Huo, Zhibao
    Zeng, Xu
    Enomoto, Heiji
    ADVANCES IN CO2 CONVERSION AND UTILIZATION, 2010, 1056 : 31 - 53
  • [25] Developing efficient heterogeneous catalysts for the conversion of CO2 to value-added products
    Raveendran, Shiju
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [26] Photothermal Catalytic CO2 Conversion to Value-Added Chemicals: Progress and Prospects
    Li, Yicheng
    Pei, Xinya
    Wang, Zhou-jun
    Shi, Li
    Song, Hui
    Ye, Jinhua
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (47): : 17069 - 17097
  • [27] Efficient, small catalytic reactor for CO2 conversion to value-added chemicals
    Hawley, Kyle
    Junaedi, Christian
    Roychoudhury, Subir
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [28] Recent advances in microbial CO2 fixation and conversion to value-added products
    Salehizadeh, Hossein
    Yan, Ning
    Farnood, Ramin
    CHEMICAL ENGINEERING JOURNAL, 2020, 390
  • [29] Catalytic Conversion of CO2 to Value-Added Products under Mild Conditions
    Yu, Yulv
    Huang, Jin
    Wang, Yuan
    CHEMCATCHEM, 2018, 10 (21) : 4863 - 4867
  • [30] Transformation of CO2 to Value-Added Materials
    Khoo, Rebecca Shu Hui
    Luo, He-Kuan
    Braunstein, Pierre
    Hor, T. S. Andy
    JOURNAL OF MOLECULAR AND ENGINEERING MATERIALS, 2015, 3 (1-2)