Coupling electrochemical CO2 conversion with CO2 capture

被引:0
|
作者
Ian Sullivan
Andrey Goryachev
Ibadillah A. Digdaya
Xueqian Li
Harry A. Atwater
David A. Vermaas
Chengxiang Xiang
机构
[1] Liquid Sunlight Alliance (LiSA) and Division of Engineering and Applied Science,Department of Chemical Engineering
[2] California Institute of Technology,undefined
[3] Delft University of Technology,undefined
来源
Nature Catalysis | 2021年 / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Electrochemical CO2 conversion into fuels or chemicals and CO2 capture from point or dilute sources are two important processes to address the gigaton challenges in reducing greenhouse gas emissions. Both CO2 capture and electrochemical CO2 conversion are energy intensive, and synergistic coupling between the two processes can improve the energy efficiency of the system and reduce the cost of the reduced products, via eliminating the CO2 transport and storage or eliminating the capture media regeneration and molecular CO2 release. We consider three different levels to couple electrochemical CO2 reduction with CO2 capture: independent (Type-I), subsequent (Type-II) and fully integrated (Type-III) capture and conversion processes. We focus on Type-II and Type-III configurations and illustrate potential coupling routes of different capture media, which include amine-based solutions and direct carbamate reduction, redox active carriers, aqueous carbonate and bicarbonate solutions, ionic liquids CO2 capture and conversion mediated by covalent organic frameworks.
引用
收藏
页码:952 / 958
页数:6
相关论文
共 50 条
  • [1] Coupling electrochemical CO2 conversion with CO2 capture
    Sullivan, Ian
    Goryachev, Andrey
    Digdaya, Ibadillah A.
    Li, Xueqian
    Atwater, Harry A.
    Vermaas, David A.
    Xiang, Chengxiang
    [J]. NATURE CATALYSIS, 2021, 4 (11) : 952 - 958
  • [2] Author Correction: Coupling electrochemical CO2 conversion with CO2 capture
    Ian Sullivan
    Andrey Goryachev
    Ibadillah A. Digdaya
    Xueqian Li
    Harry A. Atwater
    David A. Vermaas
    Chengxiang Xiang
    [J]. Nature Catalysis, 2022, 5 : 75 - 76
  • [3] CO2 capture and electrochemical conversion
    Reis Machado, Ana S.
    da Ponte, Manuel Nunes
    [J]. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2018, 11 : 86 - 90
  • [4] Coupling electrochemical CO2 conversion with CO2 capture (vol 4, pg 952, 2021)
    Sullivan, Ian
    Goryachev, Andrey
    Digdaya, Ibadillah A.
    Li, Xueqian
    Atwater, Harry A.
    Vermaas, David A.
    Xiang, Chengxiang
    [J]. NATURE CATALYSIS, 2022, 5 (01) : 75 - 76
  • [5] Advancing integrated CO2 electrochemical conversion with amine-based CO2 capture: a review
    Li, Mengran
    Yang, Kailun
    Abdinejad, Maryam
    Zhao, Chuan
    Burdyny, Thomas
    [J]. NANOSCALE, 2022, 14 (33) : 11892 - 11908
  • [6] Recent advances in integrated capture and electrochemical conversion of CO2
    Kwon, Yongjun
    Wu, Binhong
    Zhang, Ning
    Hand, David
    Mou, Tianyou
    Han, Xue
    Chang, Qiaowan
    [J]. MRS COMMUNICATIONS, 2024,
  • [7] Integration of CO2 Capture and Electrochemical Conversion Focus Review
    Xia, Qing
    Zhang, Kouer
    Zheng, Tingting
    An, Liang
    Xia, Chuan
    Zhang, Xiao
    [J]. ACS ENERGY LETTERS, 2023, 8 (06) : 2840 - 2857
  • [8] Scaling the Electrochemical Conversion of CO2 to CO
    Han, Kai
    Rowley, Ben C.
    Schellekens, Maarten P.
    Brugman, Sander
    de Heer, Michiel P.
    Keyzer, Lucas P. S.
    Corbett, Paul J.
    [J]. ACS ENERGY LETTERS, 2024, 9 (06): : 2800 - 2806
  • [9] Introduction to CO2 capture and conversion
    Shevchenko, Elena
    Park, Ah-Hyung Alissa
    Sun, Shouheng
    Zhang, Tierui
    [J]. NANOSCALE, 2023, 15 (03) : 855 - 858
  • [10] Electrochemical CO2 capture thermodynamics
    Shaw, Ryan A.
    Hatton, T. Alan
    [J]. International Journal of Greenhouse Gas Control, 2020, 95