A knowledge-based approach for discriminating multi-crop scenarios using multi-temporal polarimetric SAR parameters

被引:7
|
作者
Chirakkal, S. [1 ]
Haldar, D. [1 ]
Misra, A. [1 ]
机构
[1] Indian Space Res Org, Space Applicat Ctr, Adv Microwave & Hyperspectral Tech Dev Grp, Ahmadabad 380015, Gujarat, India
关键词
CLASSIFICATION; MULTIFREQUENCY; ENTROPY; FOREST; CROPS;
D O I
10.1080/01431161.2018.1558304
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article, we evaluate a series of POLSAR (Polarimetric Synthetic Aperture Radar) parameters and devise a robust, multi-date, and hierarchical decision tree algorithm for crop discrimination. The study area is a farmland in North India having relatively large patches of winter crops with medium heterogeneity. Ten POLSAR parameters are evaluated for this work including polarimetric entropy (), polarimetric alpha angle (), Yamaguchi decomposition components, radar vegetation index (RVI), volume scattering index, canopy scattering index, biomass index, and pedestal height (PH). We choose polarimetric RVI, polarimetric entropy, and polarimetric alpha angle parameter, after sensitivity analysis, to be incorporated into building the multi-temporal POLSAR decision tree. The proposed algorithm accepts, as input, a precisely co-registered multi-date stack of fully POLSAR imagery. The algorithm makes use of the temporal profiles of the selected POLSAR parameters in achieving the crop discrimination. We provide a quantitative assessment of classification accuracy of various classes based on extensive ground truth data. The multi-temporal algorithm is compared with the well-established, single-date, supervised Wishart classifier. Statistically significant improvement of accuracies is observed across various classes as compared to single-date methodology. Our study suggests that whenever ground truth data are extensively available, a supervised classifier based on carefully chosen multi-temporal POLSAR parameters yield very compelling crop discrimination capabilities.
引用
收藏
页码:4002 / 4018
页数:17
相关论文
共 50 条
  • [41] Multi-Temporal SAR Change Detection using Wavelet Transforms
    Bouhlel, Nizar
    Rousseau, David
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 538 - 542
  • [42] A mean based algorithm for the multi-temporal SAR image filtering
    Coltuc, D
    Becker, JM
    Radescu, R
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1798 - 1800
  • [43] AN UNSUPERVISED CHANGE DETECTION BASED ON TEST STATISTIC AND Kt FROM MULTI-TEMPORAL AND FULL POLARIMETRIC SAR IMAGES
    Zhao, J. Q.
    Yang, J.
    Li, P. X.
    Liu, M. Y.
    Shi, Y. M.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 611 - 615
  • [44] A multi-crop disease identification approach based on residual attention learning
    Kirti, Navin
    Rajpal, Navin
    JOURNAL OF INTELLIGENT SYSTEMS, 2023, 32 (01)
  • [45] Crop classification method using multi-temporal TM images
    Ma, Li
    Xu, Xingang
    Jia, Jianhua
    Huang, Wenjiang
    Liu, Liangyun
    Cheng, Yipei
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2008, 24 (SUPPL. 2): : 191 - 195
  • [46] ESTIMATION OF CROP EXTENT USING MULTI-TEMPORAL PALSAR DATA
    Milisavljevic, Nada
    Holecz, Francesco
    Bloch, Isabelle
    Closson, Damien
    Collivignarelli, Francesco
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5943 - 5946
  • [47] A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations
    Tamiminia, Haifa
    Homayouni, Saeid
    McNairn, Heather
    Safari, Abdoreza
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 58 : 201 - 212
  • [48] Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data
    Jiao, Xianfeng
    Kovacs, John M.
    Shang, Jiali
    McNairn, Heather
    Walters, Dan
    Ma, Baoluo
    Geng, Xiaoyuan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 96 : 38 - 46
  • [49] Estimation of snow hydrological parameters using single-parameter, multi-temporal SAR images
    Tadono, T
    Fukami, K
    Shi, J
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 919 - 921
  • [50] A COMPOUND POLARIMETRIC-TEXTURAL APPROACH FOR UNSUPERVISED CHANGE DETECTION IN MULTI-TEMPORAL FULL-POL SAR IMAGERY
    Pirrone, Davide
    Pham, Minh-Tan
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 316 - 319