A knowledge-based approach for discriminating multi-crop scenarios using multi-temporal polarimetric SAR parameters

被引:7
|
作者
Chirakkal, S. [1 ]
Haldar, D. [1 ]
Misra, A. [1 ]
机构
[1] Indian Space Res Org, Space Applicat Ctr, Adv Microwave & Hyperspectral Tech Dev Grp, Ahmadabad 380015, Gujarat, India
关键词
CLASSIFICATION; MULTIFREQUENCY; ENTROPY; FOREST; CROPS;
D O I
10.1080/01431161.2018.1558304
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article, we evaluate a series of POLSAR (Polarimetric Synthetic Aperture Radar) parameters and devise a robust, multi-date, and hierarchical decision tree algorithm for crop discrimination. The study area is a farmland in North India having relatively large patches of winter crops with medium heterogeneity. Ten POLSAR parameters are evaluated for this work including polarimetric entropy (), polarimetric alpha angle (), Yamaguchi decomposition components, radar vegetation index (RVI), volume scattering index, canopy scattering index, biomass index, and pedestal height (PH). We choose polarimetric RVI, polarimetric entropy, and polarimetric alpha angle parameter, after sensitivity analysis, to be incorporated into building the multi-temporal POLSAR decision tree. The proposed algorithm accepts, as input, a precisely co-registered multi-date stack of fully POLSAR imagery. The algorithm makes use of the temporal profiles of the selected POLSAR parameters in achieving the crop discrimination. We provide a quantitative assessment of classification accuracy of various classes based on extensive ground truth data. The multi-temporal algorithm is compared with the well-established, single-date, supervised Wishart classifier. Statistically significant improvement of accuracies is observed across various classes as compared to single-date methodology. Our study suggests that whenever ground truth data are extensively available, a supervised classifier based on carefully chosen multi-temporal POLSAR parameters yield very compelling crop discrimination capabilities.
引用
收藏
页码:4002 / 4018
页数:17
相关论文
共 50 条
  • [21] A multi-temporal phenology based classification approach for Crop Monitoring in Kenya
    Laneve, Giovanni
    Luciani, Roberto
    Jahjah, Munzer
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2019, 8 (02): : 249 - 264
  • [22] The Automatic Detection of Fire Scar in Alaska using Multi-Temporal PALSAR Polarimetric SAR Data
    Wei, Jujie
    Zhang, Yonghong
    Wu, Hong'an
    Cui, Bin
    CANADIAN JOURNAL OF REMOTE SENSING, 2018, 44 (05) : 447 - 461
  • [23] CROP DISCRIMINATION AND MAPPING USING MULTI-TEMPORAL RCM COMPACT POLARIMETRY SAR DATA
    Jafarzadeh, Hamid
    Mandianpari, Masoud
    Verma, Abhinav
    Bhanachary, Avik
    Homayouni, Saeid
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 8046 - 8049
  • [24] Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data
    Canisius, Francis
    Shang, Jiali
    Liu, Jiangui
    Huang, Xiaodong
    Ma, Baoluo
    Jiao, Xianfeng
    Geng, Xiaoyuan
    Kovacs, John M.
    Walters, Dan
    REMOTE SENSING OF ENVIRONMENT, 2018, 210 : 508 - 518
  • [25] Rice crop parameter retrieval using multi-temporal, multi-incidence angle Radarsat SAR data
    Chakraborty, M
    Manjunath, KR
    Panigrahy, S
    Kundu, N
    Parihar, JS
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2005, 59 (05) : 310 - 322
  • [26] Field boundary detection using multi-temporal SAR
    Gunzl, MH
    Selige, T
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 339 - 341
  • [27] Assessment of Multi-temporal RADARSAT-2 Polarimetric SAR Data for Crop Classification in an Urban/Rural Fringe Area
    Ma, Qin
    Wang, Jinfei
    Shang, Jiali
    Wang, Peng
    2013 SECOND INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2013, : 313 - 318
  • [28] Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage
    Nasirzadehdizaji, Rouhollah
    Sanli, Fusun Balik
    Abdikan, Saygin
    Cakir, Ziyadin
    Sekertekin, Aliihsan
    Ustuner, Mustafa
    APPLIED SCIENCES-BASEL, 2019, 9 (04):
  • [29] Segmentation of multi-temporal polarimetric SAR data based on mean-shift and spectral graph partitioning
    Wang, Caiqiong
    Zhao, Lei
    Zhang, Wangfei
    Mu, Xiyun
    Li, Shitao
    PEERJ, 2022, 10
  • [30] A NOVEL CHANGE DETECTION FRAMEWORK BASED ON DEEP LEARNING FOR THE ANALYSIS OF MULTI-TEMPORAL POLARIMETRIC SAR IMAGES
    De, Shaunak
    Pirrone, Davide
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Bhattacharya, Avik
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5193 - 5196