A COMPOUND POLARIMETRIC-TEXTURAL APPROACH FOR UNSUPERVISED CHANGE DETECTION IN MULTI-TEMPORAL FULL-POL SAR IMAGERY

被引:0
|
作者
Pirrone, Davide [1 ]
Pham, Minh-Tan [2 ]
机构
[1] Univ Savoie Mt Blanc, LISTIC, F-74000 Annecy, France
[2] Univ Bretagne Sud, IRISA, UMR 6074, F-56000 Vannes, France
关键词
Polarimetric SAR; change detection; gradient tensor; unsupervised detection;
D O I
10.1109/IGARSS39084.2020.9323565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Change Detection represents a relevant topic for the analysis of multi-temporal analysis of Polarimetric SAR (PolSAR) data. However, most of the CD approaches for PolSAR imagery do not take into account textural information, which can be useful for have larger performance robustness. In this work, we propose a novel approach for unsupervised change detection considering polarimetric and textural information from multi-temporal PolSAR imagery. The approach is based on the joint use of features from coherency matrix and gradient tensor and the definition of a multi-temporal distance. A binary unsupervised thresholding is used for discriminating change and no-change classes. Experimental results obtained on a multi-temporal PolSAR dataset over Los Angeles area illustrate the effectiveness of the proposed approach.
引用
收藏
页码:316 / 319
页数:4
相关论文
共 50 条
  • [1] Research on change detection method in multi-temporal polarimetric SAR imagery
    Zhao, Jinqi
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (04):
  • [2] Multi-temporal change detection for SAR imagery
    Oliver, C
    McConnell, I
    Corr, D
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES II, 1999, 3869 : 55 - 66
  • [3] AN UNSUPERVISED CHANGE DETECTION BASED ON TEST STATISTIC AND Kt FROM MULTI-TEMPORAL AND FULL POLARIMETRIC SAR IMAGES
    Zhao, J. Q.
    Yang, J.
    Li, P. X.
    Liu, M. Y.
    Shi, Y. M.
    [J]. XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 611 - 615
  • [4] UNSUPERVISED CHANGE DETECTION IN BUILT-UP AREAS BY MULTI-TEMPORAL POLARIMETRIC SAR IMAGES
    Pirrone, Davide
    De, Shaunak
    Bhattacharya, Avik
    Bruzzone, Lorenzo
    Bovolo, Francesca
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4554 - 4557
  • [5] Study on Change Detection for Multi-temporal Polarimetric SAR Images
    Zhang Juntuan
    Huang Shiqi
    Li Zhenfu
    Lin Jun
    [J]. 2008 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 1182 - +
  • [6] Algorithms for efficient multi-temporal change detection in SAR imagery
    Allen, Michael
    Kosianka, Justyna W.
    Perillo, Mark
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXX, 2023, 12520
  • [7] An unsupervised approach based on Riemannian metric to change detection on multi-temporal SAR images
    Li, Na
    Liu, Fang
    Chen, Zengping
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX, 2014, 9244
  • [8] KERNEL-BASED UNSUPERVISED CHANGE DETECTION OF AGRICULTURAL LANDS USING MULTI-TEMPORAL POLARIMETRIC SAR DATA
    Fazel, M. A.
    Homayouni, S.
    Amini, J.
    [J]. SMPR CONFERENCE 2013, 2013, 40-1-W3 : 169 - 173
  • [9] An Innovative Curvelet-only-Based Approach for Automated Change Detection in Multi-Temporal SAR Imagery
    Schmitt, Andreas
    Wessel, Birgit
    Roth, Achim
    [J]. REMOTE SENSING, 2014, 6 (03) : 2435 - 2462
  • [10] MULTI-TEMPORAL SAR CHANGE DETECTION AND MONITORING
    Hachicha, S.
    Chaabane, F.
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 293 - 298