Quasicycles in a spatial predator-prey model

被引:87
|
作者
Lugo, Carlos A. [1 ]
McKane, Alan J. [1 ]
机构
[1] Univ Manchester, Theoret Phys Grp, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.78.051911
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We use spatial models of simple predator-prey interactions to predict that predator and prey numbers oscillate in time and space. These oscillations are not seen in the deterministic versions of the models, but are due to stochastic fluctuations about the time-independent solutions of the deterministic equations which are amplified due to the existence of a resonance. We calculate the power spectra of the fluctuations analytically and show that they agree well with results obtained from stochastic simulations. This work extends the analysis of these quasicycles from that previously developed for well-mixed systems to spatial systems, and shows that the ideas and methods used for nonspatial models naturally generalize to the spatial case.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [21] Effect of spatial memory on a predator-prey model with herd behavior
    Peng, Yahong
    Yu, Ke
    Li, Yujing
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023,
  • [22] SPATIAL DYNAMICS OF A DIFFUSIVE PREDATOR-PREY MODEL WITH STAGE STRUCTURE
    Zhang, Liang
    Wang, Zhi-Cheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (06): : 1831 - 1853
  • [23] Spatial dynamics of a nonlocal predator-prey model with double mutation
    Mi, Shao-Yue
    Han, Bang-Sheng
    Yang, Yinghui
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2022, 15 (06)
  • [24] The effects of dispersal and spatial heterogeneity on the dynamics of a predator-prey model
    Wang, Biao
    Wu, Jianhua
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [25] Dynamics of a predator-prey model
    Sáez, ES
    González-Olivares, E
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) : 1867 - 1878
  • [26] A general predator-prey model
    Krabs, W
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2003, 9 (04) : 387 - 401
  • [27] DYNAMICS OF A PREDATOR-PREY MODEL
    Volokitin, E. P.
    Treskov, S. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : 87 - 99
  • [28] The simplest predator-prey model
    Kallay, Michael
    Cohen, Yosef
    ECOLOGICAL MODELLING, 2008, 218 (3-4) : 398 - 399
  • [29] On the entropy of the predator-prey model
    Balestrino, A.
    Cavallo, A.
    De Maria, G.
    2014 8TH ANNUAL IEEE SYSTEMS CONFERENCE (SYSCON), 2014, : 357 - 363
  • [30] MODEL OF PREDATOR-PREY RELATIONSHIP
    GILPIN, ME
    THEORETICAL POPULATION BIOLOGY, 1974, 5 (03) : 333 - 344