Vibration driven random walk in a Chladni experiment

被引:14
|
作者
Grabec, Igor [1 ]
机构
[1] Amanova Ltd, Kantetova Ul 75, SI-1000 Ljubljana, Slovenia
关键词
Chladni figure; Random walk; Stochastic processes;
D O I
10.1016/j.physleta.2016.10.059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Drifting of sand particles bouncing on a vibrating membrane of a Chladni experiment is characterized statistically. Records of trajectories reveal that bounces are circularly distributed and random. The mean length of their horizontal displacement is approximately proportional to the vibration amplitude above the critical level and amounts about one fourth of the corresponding bounce height. For the description of horizontal drifting of particles a model of vibration driven random walk is proposed that yields a good agreement between experimental and numerically simulated data. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [41] Random vibration tests of the anticoincidence system of the PAMELA satellite experiment
    Pearce, M
    Lund, J
    Lundin, M
    Lundquist, J
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 488 (03): : 536 - 542
  • [42] Random walk in random groups
    M. Gromov
    Geometric and Functional Analysis, 2003, 13 : 73 - 146
  • [43] Point-driven modern Chladni figures with symmetry breaking
    Tuan, P. H.
    Lai, Y. H.
    Wen, C. P.
    Huang, K. F.
    Chen, Y. F.
    SCIENTIFIC REPORTS, 2018, 8
  • [44] Biased Random Walk on the Trace of Biased Random Walk on the Trace of ...
    Croydon, David
    Holmes, Mark
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (02) : 1341 - 1372
  • [45] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [46] Quantum random walk polynomial and quantum random walk measure
    Kang, Yuanbao
    Wang, Caishi
    QUANTUM INFORMATION PROCESSING, 2014, 13 (05) : 1191 - 1209
  • [47] Quantum random walk polynomial and quantum random walk measure
    Yuanbao Kang
    Caishi Wang
    Quantum Information Processing, 2014, 13 : 1191 - 1209
  • [48] Random walk in random groups
    Gromov, M
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) : 73 - 146
  • [49] Mixing time for the random walk on the range of the random walk on tori
    Cerny, Jiri
    Sapozhnikov, Artem
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [50] Biased Random Walk on the Trace of Biased Random Walk on the Trace of …
    David Croydon
    Mark Holmes
    Communications in Mathematical Physics, 2020, 375 : 1341 - 1372