Biased Random Walk on the Trace of Biased Random Walk on the Trace of …

被引:0
|
作者
David Croydon
Mark Holmes
机构
[1] Kyoto University,Research Institute for Mathematical Sciences
[2] University of Melbourne,School of Mathematics and Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the behaviour of a sequence of biased random walks (X(i))i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 0}$$\end{document} on a sequence of random graphs, where the initial graph is Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document} and otherwise the graph for the ith walk is the trace of the (i-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i-1)$$\end{document}st walk. The sequence of bias vectors is chosen so that each walk is transient. We prove the aforementioned transience and a law of large numbers, and provide criteria for ballisticity and sub-ballisticity. We give examples of sequences of biases for which each (X(i))i≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 1}$$\end{document} is (transient but) not ballistic, and the limiting graph is an infinite simple (self-avoiding) path. We also give examples for which each (X(i))i≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 1}$$\end{document} is ballistic, but the limiting graph is not a simple path.
引用
收藏
页码:1341 / 1372
页数:31
相关论文
共 50 条
  • [1] Biased Random Walk on the Trace of Biased Random Walk on the Trace of ...
    Croydon, David
    Holmes, Mark
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (02) : 1341 - 1372
  • [2] BIASED RANDOM-WALK ON A BIASED RANDOM-WALK
    KUTNER, R
    PHYSICA A, 1991, 171 (01): : 43 - 46
  • [3] Solution of the persistent, biased random walk
    Garcia-Pelayo, Ricardo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (02) : 143 - 149
  • [4] BIASED RANDOM-WALK ON NETWORKS
    GOLDHIRSCH, I
    GEFEN, Y
    PHYSICAL REVIEW A, 1987, 35 (03): : 1317 - 1327
  • [5] The speed of biased random walk among random conductances
    Berger, Noam
    Gantert, Nina
    Nagel, Jan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 862 - 881
  • [6] BIASED RANDOM WALK IN POSITIVE RANDOM CONDUCTANCES ON Zd
    Fribergh, Alexander
    ANNALS OF PROBABILITY, 2013, 41 (06): : 3910 - 3972
  • [7] On the disconnection of a discrete cylinder by a biased random walk
    Windisch, David
    ANNALS OF APPLIED PROBABILITY, 2008, 18 (04): : 1441 - 1490
  • [8] Slowdown for the geodesic-biased random walk
    Beliayeu, Mikhail
    Chmel, Petr
    Narayanan, Bhargav
    Petr, Jan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [9] Biased Random Walk Sampling on Assortative Networks
    Yook, Soon-Hyung
    Yun, Yeo-kwang
    Kim, Yup
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 56 (03) : 990 - 993
  • [10] Biased random walk on lamplighter groups and graphs
    Revelle, D
    JOURNAL OF THEORETICAL PROBABILITY, 2001, 14 (02) : 379 - 391