Biased Random Walk on the Trace of Biased Random Walk on the Trace of …

被引:0
|
作者
David Croydon
Mark Holmes
机构
[1] Kyoto University,Research Institute for Mathematical Sciences
[2] University of Melbourne,School of Mathematics and Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the behaviour of a sequence of biased random walks (X(i))i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 0}$$\end{document} on a sequence of random graphs, where the initial graph is Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document} and otherwise the graph for the ith walk is the trace of the (i-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i-1)$$\end{document}st walk. The sequence of bias vectors is chosen so that each walk is transient. We prove the aforementioned transience and a law of large numbers, and provide criteria for ballisticity and sub-ballisticity. We give examples of sequences of biases for which each (X(i))i≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 1}$$\end{document} is (transient but) not ballistic, and the limiting graph is an infinite simple (self-avoiding) path. We also give examples for which each (X(i))i≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 1}$$\end{document} is ballistic, but the limiting graph is not a simple path.
引用
收藏
页码:1341 / 1372
页数:31
相关论文
共 50 条
  • [41] THE SPEED OF A BIASED RANDOM WALK ON A PERCOLATION CLUSTER AT HIGH DENSITY
    Fribergh, Alexander
    ANNALS OF PROBABILITY, 2010, 38 (05): : 1717 - 1782
  • [42] Interlacement limit of a stopped random walk trace on a torus
    Jarai, Antal A.
    Sun, Minwei
    ADVANCES IN APPLIED PROBABILITY, 2024, 56 (01) : 354 - 388
  • [43] A RANDOM WALK ON A NON-INTERSECTING TWO-SIDED RANDOM WALK TRACE IS SUBDIFFUSIVE IN LOW DIMENSIONS
    Shiraishi, Daisuke
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (07) : 4525 - 4558
  • [44] Biased random walk with restart for link prediction with graph embedding method
    Zhou, Yinzuo
    Wu, Chencheng
    Tan, Lulu
    Physica A: Statistical Mechanics and its Applications, 2021, 570
  • [45] Biased random walk on critical Galton–Watson trees conditioned to survive
    D. A. Croydon
    A. Fribergh
    T. Kumagai
    Probability Theory and Related Fields, 2013, 157 : 453 - 507
  • [47] A time-varying biased random walk approach to human growth
    Suki, Bela
    Frey, Urs
    SCIENTIFIC REPORTS, 2017, 7
  • [48] Biased random walk model for the prioritization of drug resistance associated proteins
    Guo, Hao
    Dong, Jiaqiang
    Hu, Sijun
    Cai, Xiqiang
    Tang, Guangbo
    Dou, Jianhua
    Tian, Miaomiao
    He, Fuchu
    Nie, Yongzhan
    Fan, Daiming
    SCIENTIFIC REPORTS, 2015, 5
  • [49] Absorbing-state phase transition in biased activated random walk
    Taggi, Lorenzo
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [50] Scaling limit of the recurrent biased random walk on a Galton–Watson tree
    Elie Aïdékon
    Loïc de Raphélis
    Probability Theory and Related Fields, 2017, 169 : 643 - 666