Vibration driven random walk in a Chladni experiment

被引:14
|
作者
Grabec, Igor [1 ]
机构
[1] Amanova Ltd, Kantetova Ul 75, SI-1000 Ljubljana, Slovenia
关键词
Chladni figure; Random walk; Stochastic processes;
D O I
10.1016/j.physleta.2016.10.059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Drifting of sand particles bouncing on a vibrating membrane of a Chladni experiment is characterized statistically. Records of trajectories reveal that bounces are circularly distributed and random. The mean length of their horizontal displacement is approximately proportional to the vibration amplitude above the critical level and amounts about one fourth of the corresponding bounce height. For the description of horizontal drifting of particles a model of vibration driven random walk is proposed that yields a good agreement between experimental and numerically simulated data. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [21] Fleming-Viot Particle System Driven by a Random Walk on
    Maric, Nevena
    JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (03) : 548 - 560
  • [22] Superdiffusion of a random walk driven by an ergodic Markov process with switching
    Fedotov, S.
    Milstein, G. N.
    Tretyakov, M. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (22) : 5769 - 5782
  • [23] RANDOM-WALK ON A RANDOM-WALK
    KEHR, KW
    KUTNER, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1982, 110 (03) : 535 - 549
  • [24] Directed random walk with random restarts: The Sisyphus random walk
    Montero, Miquel
    Villarroel, Javier
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [25] Reaction kinetics in zeolites as a random walk problem: Theory versus experiment
    Barzykin, AV
    Hashimoto, S
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (07): : 2841 - 2845
  • [26] On random random walk
    Roichman, Y
    ANNALS OF PROBABILITY, 1996, 24 (02): : 1001 - 1011
  • [27] Random walk on barely supercritical branching random walk
    van der Hofstad, Remco
    Hulshof, Tim
    Nagel, Jan
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 1 - 53
  • [28] Random walk on barely supercritical branching random walk
    Remco van der Hofstad
    Tim Hulshof
    Jan Nagel
    Probability Theory and Related Fields, 2020, 177 : 1 - 53
  • [29] Deep-Learning-Driven Random Walk Method for Capacitance Extraction
    Visvardis, Marios
    Liaskovitis, Periklis
    Efstathiou, Efthymios
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (08) : 2643 - 2656
  • [30] Importance driven quasi-random walk solution of the rendering equation
    Szirmay-Kalos, László
    Csébfalvi, Balázs
    Purgathofer, Werner
    Computers and Graphics (Pergamon), 1999, 23 (02): : 203 - 211