Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation

被引:0
|
作者
Tavakoli, Hamed Rezazadegan [1 ]
Rahtu, Esa [1 ]
Heikkila, Janne [1 ]
机构
[1] Univ Oulu, Dept Elect & Informat Engn, Machine Vis Grp, Oulu, Finland
关键词
Saliency detection; discriminant center-surround; eye-fixation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Salient region detection has gained a great deal of attention in computer vision. It is useful for applications such as adaptive video/image compression, image segmentation, anomaly detection, image retrieval, etc. In this paper, we study saliency detection using a center-surround approach. The proposed method is based on estimating saliency of local feature contrast in a Bayesian framework. The distributions needed are estimated particularly using sparse sampling and kernel density estimation. Furthermore, the nature of method implicitly considers what refereed to as center bias in literature. Proposed method was evaluated on a publicly available data set which contains human eye fixation as ground-truth. The results indicate more than 5% improvement over state-of-the-art methods. Moreover, the method is fast enough to run in real-time.
引用
收藏
页码:666 / 675
页数:10
相关论文
共 50 条
  • [11] Spherical Center-Surround for Video Saliency Detection Using Sparse Sampling
    Tavakoli, Hamed Rezazadegan
    Rahtu, Esa
    Heikkila, Janne
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2013, 2013, 8192 : 695 - 704
  • [12] Versatile sequential sampling algorithm using Kernel Density Estimation
    Roy, Pamphile T.
    Jofre, Lluis
    Jouhaud, Jean-Christophe
    Cuenot, Benedicte
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 284 (01) : 201 - 211
  • [13] Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking
    Elgammal, A
    Duraiswami, R
    Davis, LS
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (11) : 1499 - 1504
  • [14] Fast Saliency Detection Using Sparse Random Color Samples and Joint Upsampling
    Ian Lie, Maiko Min
    Borba, Gustavo Benvenutti
    Vieira Neto, Hugo
    Gamba, Humberto Remigio
    2016 29TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2016, : 217 - 224
  • [15] A sparse kernel density estimation algorithm using forward constrained regression
    Hong, Xia
    Chen, Sheng
    Harris, Chris
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2007, 2 : 1354 - +
  • [16] Fast Kernel Density Estimation using Gaussian Filter Approximation
    Bullmann, Markus
    Fetzer, Toni
    Ebner, Frank
    Deinzer, Frank
    Grzegorzek, Marcin
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1233 - 1240
  • [17] Sparse Kernel Approximations for Efficient Classification and Detection
    Vedaldi, Andrea
    Zisserman, Andrew
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2320 - 2327
  • [18] Parameter Density Inheritance Using Kernel Density Estimation for Efficient CNN Learning
    Horiuchi, Keisuke
    Kameyama, Keisuke
    2018 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2018, : 308 - 313
  • [19] Saliency Detection Using Quaternion Sparse Reconstruction
    Zeng, Yi
    Xu, Yi
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 469 - 476
  • [20] Robust sparse kernel density estimation by inducing randomness
    Chen, Fei
    Yu, Huimin
    Yao, Jincao
    Hu, Roland
    PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 367 - 375