Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking

被引:140
|
作者
Elgammal, A
Duraiswami, R
Davis, LS
机构
[1] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08854 USA
[2] Univ Maryland, Comp Vis Lab, College Pk, MD 20742 USA
关键词
statistical methods; kernel density estimation; fast Gauss transform; color modeling; tracking;
D O I
10.1109/TPAMI.2003.1240123
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many vision algorithms depend on the estimation of a probability density function from observations. Kernel density estimation techniques are quite general and powerful methods for this problem, but have a significant disadvantage in that they are computationally intensive. In this paper, we explore the use of kernel density estimation with the fast Gauss transform (FGT) for problems in vision. The FGT allows the summation of a mixture of M Gaussians at N evaluation points in O(M + N) time, as opposed to O(M N) time for a naive evaluation and can be used to considerably speed up kernel density estimation. We present applications of the technique to problems from image segmentation and tracking and show that the algorithm allows application of advanced statistical techniques to solve practical vision problems in real-time with today's computers.
引用
收藏
页码:1499 / 1504
页数:6
相关论文
共 50 条
  • [1] Improved fast Gauss transform and efficient kernel density estimation
    Yang, CJ
    Duraiswami, R
    Gumerov, NA
    Davis, L
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 464 - 471
  • [2] Efficient non-parametric adaptive color modeling using fast gauss transform
    Elgammal, A
    Davis, LS
    Duraiswami, R
    [J]. 2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2001, : 563 - 570
  • [3] KERNEL DENSITY-ESTIMATION USING THE FAST FOURIER-TRANSFORM
    SILVERMAN, BW
    [J]. APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1982, 31 (01): : 93 - 99
  • [4] A fast background model using kernel density estimation and distance transform
    Cao, Jianzhao
    Ma, Ruwei
    Michael, Oloro
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (02) : 135 - 144
  • [5] KERNEL DENSITY-ESTIMATION USING THE FAST FOURIER-TRANSFORM - A REMARK
    JONES, MC
    LOTWICK, HW
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1984, 33 (01) : 120 - 122
  • [6] Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation
    Tavakoli, Hamed Rezazadegan
    Rahtu, Esa
    Heikkila, Janne
    [J]. IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 666 - 675
  • [7] Fast global kernel density mode seeking: Applications to localization and tracking
    Shen, Chunhua
    Brooks, Michael J.
    van den Hengel, Anton
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (05) : 1457 - 1469
  • [8] Kernel Density Estimation using Joint Spatial-Color-Depth Data for Background Modeling
    Giordano, Daniela
    Palazzo, Simone
    Spampinato, Concetto
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 4388 - 4393
  • [9] A REMARK ON ALGORITHM AS176 - KERNEL DENSITY-ESTIMATION USING THE FAST FOURIER-TRANSFORM
    SCHIFFELBEIN, P
    [J]. APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1986, 35 (02): : 235 - 236
  • [10] Robust tracking with motion estimation and local Kernel-based color modeling
    Babu, R. Venkatesh
    Perez, Patrick
    Bouthemy, Patrick
    [J]. IMAGE AND VISION COMPUTING, 2007, 25 (08) : 1205 - 1216