Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation

被引:0
|
作者
Tavakoli, Hamed Rezazadegan [1 ]
Rahtu, Esa [1 ]
Heikkila, Janne [1 ]
机构
[1] Univ Oulu, Dept Elect & Informat Engn, Machine Vis Grp, Oulu, Finland
关键词
Saliency detection; discriminant center-surround; eye-fixation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Salient region detection has gained a great deal of attention in computer vision. It is useful for applications such as adaptive video/image compression, image segmentation, anomaly detection, image retrieval, etc. In this paper, we study saliency detection using a center-surround approach. The proposed method is based on estimating saliency of local feature contrast in a Bayesian framework. The distributions needed are estimated particularly using sparse sampling and kernel density estimation. Furthermore, the nature of method implicitly considers what refereed to as center bias in literature. Proposed method was evaluated on a publicly available data set which contains human eye fixation as ground-truth. The results indicate more than 5% improvement over state-of-the-art methods. Moreover, the method is fast enough to run in real-time.
引用
收藏
页码:666 / 675
页数:10
相关论文
共 50 条
  • [21] Robust sparse kernel density estimation by inducing randomness
    Fei Chen
    Huimin Yu
    Jincao Yao
    Roland Hu
    Pattern Analysis and Applications, 2015, 18 : 367 - 375
  • [22] A fast background model using kernel density estimation and distance transform
    Cao, Jianzhao
    Ma, Ruwei
    Michael, Oloro
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (02) : 135 - 144
  • [23] KERNEL DENSITY-ESTIMATION USING THE FAST FOURIER-TRANSFORM
    SILVERMAN, BW
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1982, 31 (01): : 93 - 99
  • [24] Distributionally Robust Fault Detection by using Kernel Density Estimation
    Xue, Ting
    Zhong, Maiying
    Luo, Lijia
    Li, Linlin
    Ding, Steven X.
    IFAC PAPERSONLINE, 2020, 53 (02): : 652 - 657
  • [25] Online Bad Data Detection Using Kernel Density Estimation
    Uddin, Muhammad Sharif
    Kuh, Anthony
    Weng, Yang
    Ilic, Marija
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [26] Fast & Accurate Gaussian Kernel Density Estimation
    Heer, Jeffrey
    2021 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2021), 2021, : 11 - 15
  • [27] Nonlinear process fault detection and identification using kernel PCA and kernel density estimation
    Samuel, Raphael Tari
    Cao, Yi
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2016, 4 (01): : 165 - 174
  • [28] Sparse Sampling Methods for Efficient Spatial Coherence Estimation
    Hyun, Dongwoon
    Trahey, Gregg E.
    Dahl, Jeremy J.
    2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2014, : 535 - 538
  • [29] Visual saliency object detection using sparse learning
    Nasiripour, Reza
    Farsi, Hassan
    Mohamadzadeh, Sajad
    IET IMAGE PROCESSING, 2019, 13 (13) : 2436 - 2447
  • [30] An orthogonal forward regression technique for sparse kernel density estimation
    Chen, S.
    Hong, X.
    Harris, C. J.
    NEUROCOMPUTING, 2008, 71 (4-6) : 931 - 943