OPTIMAL ERROR ESTIMATES OF SPECTRAL PETROV-GALERKIN AND COLLOCATION METHODS FOR INITIAL VALUE PROBLEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS

被引:38
|
作者
Zhang, Zhongqiang [1 ]
Zeng, Fanhai [2 ]
Karniadakis, George Em [2 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
end-point singularity; spectral Petrov-Galerkin; collocation; error estimate; Jacobi polynomials; Laguerre polynomials; DIFFUSION EQUATION; UNBOUNDED-DOMAINS; ELEMENT METHODS; SPACE; APPROXIMATIONS; POLYNOMIALS; ORDER;
D O I
10.1137/140988218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present optimal error estimates for spectral Petrov-Galerkin methods and spectral collocation methods for linear fractional ordinary differential equations with initial value on a finite interval. We also develop Laguerre spectral Petrov-Galerkin methods and collocation methods for fractional equations on the half line. Numerical results confirm the error estimates.
引用
收藏
页码:2074 / 2096
页数:23
相关论文
共 50 条
  • [41] OPTIMAL REGULARITY AND ERROR ESTIMATES OF A SPECTRAL GALERKIN METHOD FOR FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS
    Hao, Zhaopeng
    Zang, Zhongqiang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 211 - 233
  • [42] Optimal error estimates of spectral Galerkin method for mixed diffusion equations
    Hao, Zhaopeng
    CALCOLO, 2023, 60 (01)
  • [43] Optimal error estimates of spectral Galerkin method for mixed diffusion equations
    Zhaopeng Hao
    Calcolo, 2023, 60
  • [44] A posteriori error estimates of spectral Galerkin methods for multi-term time fractional diffusion equations
    Tang, Bo
    Chen, Yanping
    Lin, Xiuxiu
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [45] A PRIORI ERROR ANALYSIS OF THE PETROV-GALERKIN CRANK-NICOLSON SCHEME FOR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Meidner, Dominik
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (05) : 2183 - 2211
  • [46] A Unified Petrov-Galerkin Spectral Method and Fast Solver for Distributed-Order Partial Differential Equations
    Samiee, Mehdi
    Kharazmi, Ehsan
    Meerschaert, Mark M.
    Zayernouri, Mohsen
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (01) : 61 - 90
  • [47] A SPECTRAL COLLOCATION METHOD FOR SOLVING INITIAL VALUE PROBLEMS OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS
    Guo, Ben-Yu
    Wang, Zhong-Qing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (03): : 1029 - 1054
  • [48] Galerkin and Collocation Methods for Weakly Singular Fractional Integro-differential Equations
    Sharma, Shiva
    Pandey, Rajesh K.
    Kumar, Kamlesh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4): : 1649 - 1656
  • [49] Galerkin and Collocation Methods for Weakly Singular Fractional Integro-differential Equations
    Shiva Sharma
    Rajesh K. Pandey
    Kamlesh Kumar
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1649 - 1656
  • [50] Error estimates of general linear and spectral Galerkin methods for the fractional diffusion equation with spectral fractional Laplacian
    Zhang, Yanming
    Li, Yu
    Yu, Yuexin
    Wang, Wansheng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (02):