OPTIMAL ERROR ESTIMATES OF SPECTRAL PETROV-GALERKIN AND COLLOCATION METHODS FOR INITIAL VALUE PROBLEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS

被引:38
|
作者
Zhang, Zhongqiang [1 ]
Zeng, Fanhai [2 ]
Karniadakis, George Em [2 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
end-point singularity; spectral Petrov-Galerkin; collocation; error estimate; Jacobi polynomials; Laguerre polynomials; DIFFUSION EQUATION; UNBOUNDED-DOMAINS; ELEMENT METHODS; SPACE; APPROXIMATIONS; POLYNOMIALS; ORDER;
D O I
10.1137/140988218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present optimal error estimates for spectral Petrov-Galerkin methods and spectral collocation methods for linear fractional ordinary differential equations with initial value on a finite interval. We also develop Laguerre spectral Petrov-Galerkin methods and collocation methods for fractional equations on the half line. Numerical results confirm the error estimates.
引用
收藏
页码:2074 / 2096
页数:23
相关论文
共 50 条