Manipulation and trapping of sub-micron bioparticles using dielectrophoresis

被引:148
|
作者
Green, NG
Morgan, H
Milner, JJ
机构
[1] UNIV GLASGOW,DEPT ELECT & ELECT ENGN,BIOELECT RES CTR,GLASGOW G12 8QQ,LANARK,SCOTLAND
[2] UNIV GLASGOW,INST BIOL & LIFE SCI,DIV BIOCHEM & MOL BIOL,PLANT MOL SCI GRP,GLASGOW G12 8QQ,LANARK,SCOTLAND
来源
基金
英国生物技术与生命科学研究理事会;
关键词
latex spheres; tobacco mosaic virus; dielectrophoresis; micro-electrodes; bio-particle manipulation;
D O I
10.1016/S0165-022X(97)00033-X
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A non-uniform alternating electric field induces motion in polarisable particles called dielectrophoresis. The effect is governed by the relative magnitudes of the dielectric properties of the medium and the particles. The technology has been used to manipulate particles for biotechnological applications, including purification, fractionation and concentration of cells and microorganisms. However, the lower size limit for the dielectrophoretic manipulation of particles was believed to be about 1 mu m, but recent work has proved otherwise. The dielectrophoretic movement and properties of latex beads and a simple rod-shaped virus, tobacco mosaic virus (TMV), have been measured using microfabricated electrode structures. Measurements have been made over a range of suspending medium conductivities, applied frequencies and electric field strengths. It is shown that under appropriate conditions both latex beads and tobacco mosaic virus particles can be selectively attracted to regions of high electric field strength located at the tips of microfabricated electrode structures. The ability to selectively trap and separate bio-particles has many potential applications in the area of biotechnology. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 50 条
  • [31] NATIONAL SUB-MICRON FACILITY
    WOLF, ED
    PHYSICS TODAY, 1979, 32 (11) : 34 - 36
  • [32] THE SUB-MICRON LITHOGRAPHY LABYRINTH
    BROERS, AN
    SOLID STATE TECHNOLOGY, 1985, 28 (06) : 119 - 126
  • [33] SUB-MICRON IDT FABRICATION
    VANDENBERG, HAM
    HUMPHRYES, RF
    RUIGROK, JJM
    VENEMA, A
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1978, 25 (04): : 232 - 232
  • [34] TRANSPORT IN SUB-MICRON DEVICES
    FERRY, DK
    JOURNAL DE PHYSIQUE, 1981, 42 (NC7): : 253 - 261
  • [35] SUB-MICRON NANOFIBER MEMBRANES
    Ungur, Ganna
    Hruza, Jakub
    STRUTEX: STRUCTURE AND STRUCTURAL MECHANICS OF TEXTILES FABRICS, 2011/STRUKTURNI A STRUKTURNI MECHANIKA TEXTILII, 2011, 2011, : 319 - 325
  • [36] SUB-MICRON METROLOGY FOR MASKS
    NAWRATH, R
    PAUL, HH
    TECHNISCHES MESSEN, 1988, 55 (09): : 341 - 345
  • [37] TOWARD SUB-MICRON LITHOGRAPHY
    LONG, ML
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1981, 275 : 2 - 8
  • [38] The sub-micron fabrication technology
    Liu, M
    Chen, BQ
    Ye, TC
    Qian, H
    Xu, QX
    SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2001, : 452 - 455
  • [39] Mixing in sub-micron ducts
    Nauman, EB
    Nigam, A
    CHEMICAL ENGINEERING & TECHNOLOGY, 2004, 27 (03) : 293 - 296
  • [40] Flame synthesis of nanophosphors using sub-micron aerosols
    Abram, Christopher
    Mezhericher, Maksim
    Beyrau, Frank
    Stone, Howard A.
    Ju, Yiguang
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (01) : 1231 - 1239