Rolling bearing fault feature extraction using Adaptive Resonancebased Sparse Signal Decomposition

被引:2
|
作者
Wang, Kaibo [1 ]
Jiang, Hongkai [1 ]
Wu, Zhenghong [1 ]
Cao, Jiping [2 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
[2] Xian Hightech Res Inst, Xian, Peoples R China
来源
ENGINEERING RESEARCH EXPRESS | 2021年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
Lion swarm algorithm; fault feature extraction; adaptive resonance-based sparse signal decomposition; Multipoint optimal; minimum entropy deconvolution adjusted; rolling bearing; MINIMUM ENTROPY DECONVOLUTION; DIAGNOSIS;
D O I
10.1088/2631-8695/abb28e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [41] Feature Extraction of Bearing Weak Fault Based on Sparse Coding Theory and Adaptive EWT
    Chen, Qing
    Zheng, Sheng
    Wu, Xing
    Liu, Tao
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [42] Rolling Bearing Fault Diagnosis Based on EEMD and Sparse Decomposition
    Li, Ming
    Li, Jimeng
    Jiang, Guoqian
    Zhang, Jinfeng
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 932 - 938
  • [43] Adaptive feature extraction using sparse coding for machinery fault diagnosis
    Liu, Haining
    Liu, Chengliang
    Huang, Yixiang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2011, 25 (02) : 558 - 574
  • [44] Rolling bearing incipient fault feature extraction using impulse-enhanced sparse time-frequency representation
    Zhu, Hongxuan
    Jiang, Hongkai
    Yao, Renhe
    Yang, Qiao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (10)
  • [45] Fault feature extraction of rolling bearings using local mean decomposition-based enhanced sparse coding shrinkage
    Sun Y.
    Yu J.
    Journal of King Saud University - Engineering Sciences, 2022, 34 (01): : 17 - 22
  • [46] Feature Extraction Using Hierarchical Dispersion Entropy for Rolling Bearing Fault Diagnosis
    Xue, Qiang
    Xu, Boyu
    He, Changbo
    Liu, Fang
    Ju, Bin
    Lu, Siliang
    Liu, Yongbin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [47] An Improved Variational Mode Decomposition and Its Application on Fault Feature Extraction of Rolling Element Bearing
    An, Guoping
    Tong, Qingbin
    Zhang, Yanan
    Liu, Ruifang
    Li, Weili
    Cao, Junci
    Lin, Yuyi
    ENERGIES, 2021, 14 (04)
  • [48] FEATURE EXTRACTION OF ROLLING BEARING FAULT BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND CORRELATION DIMENSION
    Zhao, Lei
    Zhou, Zude
    Yin, Yang
    Chen, Rong
    Liu, Quan
    Wei, Qin
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2014, VOL 2, 2014,
  • [49] Application of Parameter Optimized Variational Mode Decomposition Method in Fault Feature Extraction of Rolling Bearing
    Liang, Tao
    Lu, Hao
    Sun, Hexu
    ENTROPY, 2021, 23 (05)
  • [50] Weak fault feature extraction of bearing based on sparse decomposition and frequency domain correlation kurtosis
    Zhao L.
    Yang S.
    Liu Y.
    Gu X.
    Wang J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (23): : 196 - 202and212