Rolling bearing incipient fault feature extraction using impulse-enhanced sparse time-frequency representation

被引:2
|
作者
Zhu, Hongxuan [1 ]
Jiang, Hongkai [1 ]
Yao, Renhe [1 ]
Yang, Qiao [2 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
[2] AECC Sichuan Gas Turbine Estab, Mianyang 621010, Peoples R China
基金
中国国家自然科学基金;
关键词
incipient fault feature extraction; impulse-enhanced sparse time-frequency representation; non-convex penalty function; SYNCHROSQUEEZING TRANSFORM; DIAGNOSIS;
D O I
10.1088/1361-6501/ace545
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Incipient faults features are often extremely weak and susceptible to heavy noise, making it challenging to obtain the concentrated faulty energy ridges in the time-frequency domain. Thus, a novel impulse-enhanced sparse time-frequency representation (IESTFR) method is proposed in this paper. First, the time-rearranged multisynchrosqueezing transform is utilized to produce a time-frequency representation (TFR) with a high energy concentration for faulty impulses. Next, a new non-convex penalty function is constructed by the hyperbolic tangent function, which can enhance the periodic impulsivity of sparse TFR for more obvious fault characteristic frequency. Moreover, the time-frequency transform is evaluated and compared by simulated signals and a selection strategy for the regularization parameter is designed. Simulated signals and two experimental signals are applied to verify the effectiveness of IESTFR, and the results show that IESTFR is effective and superior in bearing incipient fault feature extraction.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Incipient detection of bearing fault using impulse feature enhanced weighted sparse representation
    Li, Bingqiang
    Li, Chenyun
    Liu, Jinfeng
    TRIBOLOGY INTERNATIONAL, 2023, 184
  • [2] Rolling Bearing Fault Monitoring for Sparse Time-Frequency Representation and Feature Detection Strategy
    Tang, Jiahui
    Wu, Jimei
    Qing, Jiajuan
    Kang, Tuo
    ENTROPY, 2022, 24 (12)
  • [3] Bearing incipient fault feature extraction using adaptive period matching enhanced sparse representation
    Yao, Renhe
    Jiang, Hongkai
    Li, Xingqiu
    Cao, Jiping
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 166
  • [4] Sparse representation based on local time-frequency template matching for bearing transient fault feature extraction
    He, Qingbo
    Ding, Xiaoxi
    JOURNAL OF SOUND AND VIBRATION, 2016, 370 : 424 - 443
  • [5] Rolling bearing fault diagnosis method by using feature extraction of convolutional time-frequency image
    Hou, Junjian
    Lu, Xikang
    Zhong, Yudong
    He, Wenbin
    Zhao, Dengfeng
    Zhou, Fang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (09) : 4212 - 4228
  • [6] Periodicity-enhanced sparse representation for rolling bearing incipient fault detection
    Yao, Renhe
    Jiang, Hongkai
    Wu, Zhenghong
    Wang, Kaibo
    ISA TRANSACTIONS, 2021, 118 : 219 - 237
  • [7] Time-varying fault feature extraction of rolling bearing via time-frequency sparsity
    Yi, Cancan
    Qin, Jiaqi
    Huang, Tao
    Jin, Zhangmin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (02)
  • [8] Time-Frequency Fault Feature Extraction for Rolling Bearing Based on the Tensor Manifold Method
    Wang, Fengtao
    Chen, Shouhai
    Sun, Jian
    Yan, Dawen
    Wang, Lei
    Zhang, Lihua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [9] Time-frequency manifold sparse reconstruction: A novel method for bearing fault feature extraction
    Ding, Xiaoxi
    He, Qingbo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 80 : 392 - 413
  • [10] Rolling Bearing Fault Diagnosis Based on Time-Frequency Feature Extraction and IBA-SVM
    Zhang, Mei
    Yin, Jun
    Chen, Wanli
    IEEE ACCESS, 2022, 10 : 85641 - 85654