Incipient detection of bearing fault using impulse feature enhanced weighted sparse representation

被引:9
|
作者
Li, Bingqiang [1 ]
Li, Chenyun [1 ]
Liu, Jinfeng [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Mech Engn, Zhenjiang 212003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Bearing fault diagnosis; Weighted sparse regularization; Feature extraction; Period estimation; MODEL; REGULARIZATION;
D O I
10.1016/j.triboint.2023.108467
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The bearing fault impact impulses induced by the contact between components with drawback, is difficult to be detected at sprouting stage due to the interference of background noise, harmonics, random shocks, etc. In this paper, an impulse feature enhanced weighted sparse representation (IFEWSR) algorithm is proposed to accurately detect the weak bearing fault impact feature from incipient stage condition monitoring (CM) signal. Firstly, a modified fault period estimation method is presented to improve the robustness and reduce the computational complexity of recently proposed algorithms. Secondly, a novel weighting strategy on wavelet coefficients, indicated by the period-assisted corelated kurtosis of envelope spectrum (CKSES), is presented to denote the contribution of subband signals for sparse representation calculation framework. In addition, the mean normalized energy-weight deviation (MNEWD) rule is proposed to evaluate the performance of the weighting algorithm on subband signals which is blank at present. Thirdly, a novel fault feature enhancement technique is developed to better capture the bearing fault feature information. The effectiveness and superiority of the proposed method are proved by simulation and experiments. Results show that the proposed IFEWSR method provides higher accuracy for incipient fault feature extraction and outperforms other state-of-the-art methods.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Rolling bearing incipient fault feature extraction using impulse-enhanced sparse time-frequency representation
    Zhu, Hongxuan
    Jiang, Hongkai
    Yao, Renhe
    Yang, Qiao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (10)
  • [2] Bearing incipient fault feature extraction using adaptive period matching enhanced sparse representation
    Yao, Renhe
    Jiang, Hongkai
    Li, Xingqiu
    Cao, Jiping
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 166
  • [3] Periodicity-enhanced sparse representation for rolling bearing incipient fault detection
    Yao, Renhe
    Jiang, Hongkai
    Wu, Zhenghong
    Wang, Kaibo
    ISA TRANSACTIONS, 2021, 118 : 219 - 237
  • [4] Optimal periodicity-enhanced group sparse for bearing incipient fault feature extraction
    Zhang, Sicheng
    Jiang, Hongkai
    Yao, Renhe
    Zhu, Hongxuan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (08)
  • [5] Adaptive multiscale wavelet-guided periodic sparse representation for bearing incipient fault feature extraction
    Niu, MaoGui
    Jiang, HongKai
    Yao, RenHe
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (11) : 3585 - 3596
  • [6] Adaptive multiscale wavelet-guided periodic sparse representation for bearing incipient fault feature extraction
    NIU MaoGui
    JIANG HongKai
    YAO RenHe
    Science China(Technological Sciences), 2024, 67 (11) : 3585 - 3596
  • [7] Sparse Representation based on Spectral Kurtosis for Incipient Bearing Fault Diagnosis
    Sun, Ruo-Bin
    Yang, Zhi-Bo
    Chen, Xue-Feng
    Xiang, Jia-Wei
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 391 - 396
  • [8] Online detection of bearing incipient fault with semi-supervised architecture and deep feature representation
    Mao, Wentao
    Tian, Siyu
    Fan, Jingjing
    Liang, Xihui
    Safian, Ali
    JOURNAL OF MANUFACTURING SYSTEMS, 2020, 55 : 179 - 198
  • [9] Incipient Multi-fault Diagnosis of Rolling Bearing Using Improved TQWT and Sparse Representation Approach
    Li, Qing
    Liang, Steven Y.
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2017, : 446 - 450
  • [10] Rolling Bearing Fault Monitoring for Sparse Time-Frequency Representation and Feature Detection Strategy
    Tang, Jiahui
    Wu, Jimei
    Qing, Jiajuan
    Kang, Tuo
    ENTROPY, 2022, 24 (12)