Rolling bearing fault feature extraction using Adaptive Resonancebased Sparse Signal Decomposition

被引:2
|
作者
Wang, Kaibo [1 ]
Jiang, Hongkai [1 ]
Wu, Zhenghong [1 ]
Cao, Jiping [2 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
[2] Xian Hightech Res Inst, Xian, Peoples R China
来源
ENGINEERING RESEARCH EXPRESS | 2021年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
Lion swarm algorithm; fault feature extraction; adaptive resonance-based sparse signal decomposition; Multipoint optimal; minimum entropy deconvolution adjusted; rolling bearing; MINIMUM ENTROPY DECONVOLUTION; DIAGNOSIS;
D O I
10.1088/2631-8695/abb28e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [31] Incipient Fault Feature Extraction of Rolling Bearing Based on Optimized Singular Spectrum Decomposition
    Chen, Zhixiang
    He, Changbo
    Liu, Yongbin
    Lu, Siliang
    Liu, Fang
    Li, Guoli
    IEEE SENSORS JOURNAL, 2021, 21 (18) : 20362 - 20374
  • [32] Feature extraction of rolling bearing fault signal of: rolling mill based on wavelet packet denoising method
    Xia, Bingxin
    Shang, Li
    Fan, Lei
    Wang, Dan
    Xing, Zhihui
    Li, Jiping
    SECOND IYSF ACADEMIC SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING, 2021, 12079
  • [33] Feature Extraction for Weak Fault of Rolling Bearing Based on Hybrid Signal Processing Technique
    Yang Bao-Ping
    Ding Ru-Chun
    Zhou Feng-Xing
    Xu Bo
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 188 - 195
  • [34] Rolling bearing fault feature extraction method based on GWO-optimized adaptive stochastic resonance signal processing
    Zhenya Quan
    Xueliang Zhang
    SN Applied Sciences, 2023, 5
  • [35] Feature extraction of gear and bearing compound faults based on vibration signal sparse decomposition
    He, Guolin
    Li, Jianlin
    Ding, Kang
    Zhang, Zhigang
    APPLIED ACOUSTICS, 2022, 189
  • [36] Rolling bearing fault feature extraction method based on GWO-optimized adaptive stochastic resonance signal processing
    Quan, Zhenya
    Zhang, Xueliang
    SN APPLIED SCIENCES, 2023, 5 (01):
  • [37] Research on Feature Extraction Method of Engine Misfire Fault Based on Signal Sparse Decomposition
    Du, Canyi
    Jiang, Fei
    Ding, Kang
    Li, Feng
    Yu, Feifei
    SHOCK AND VIBRATION, 2021, 2021
  • [38] Fault Feature Extraction of Rolling Bearing Based on LFK
    Yu He
    Li Hongru
    Sun Jian
    PROCEEDINGS OF THE 2016 2ND WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS, 2016, 81 : 642 - 646
  • [39] A new approach to adaptive VMD based on SSA for rolling bearing fault feature extraction
    Gao, Shuzhi
    Zhao, Ning
    Chen, Xuefeng
    Pei, Zhiming
    Zhang, Yimin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [40] Resonance-Based Sparse Decomposition Application in Extraction of Rolling Bearing Weak Fault Information
    Huang, Wentao
    Liu, Yinfeng
    Li, Xiaocheng
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISKE 2013), 2014, 277 : 823 - 831