Not So Greedy: Enhanced Subset Exploration for Nonrandomness Detectors

被引:0
|
作者
Karlsson, Linus [1 ]
Hell, Martin [1 ]
Stankovski, Paul [1 ]
机构
[1] Lund Univ, Dept Elect & Informat Technol, POB 118, S-22100 Lund, Sweden
来源
关键词
Maximum degree monomial; Distinguisher; Nonrandomness detector; Grain-128a; Grain-128; Kreyvium;
D O I
10.1007/978-3-319-93354-2_13
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distinguishers and nonrandomness detectors are used to distinguish ciphertext from random data. In this paper, we focus on the construction of such devices using the maximum degree monomial test. This requires the selection of certain subsets of key and IV-bits of the cipher, and since this selection to a great extent affects the final outcome, it is important to make a good selection. We present a new, generic and tunable algorithm to find such subsets. Our algorithm works on any stream cipher, and can easily be tuned to the desired computational complexity. We test our algorithm with both different input parameters and different ciphers, namely Grain-128a, Kreyvium and Grain-128. Compared to a previous greedy approach, our algorithm consistently provides better results.
引用
下载
收藏
页码:273 / 294
页数:22
相关论文
共 50 条
  • [1] Greedy Distinguishers and Nonrandomness Detectors
    Stankovski, Paul
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2010, 2010, 6498 : 210 - 226
  • [2] Improved Greedy Nonrandomness Detectors for Stream Ciphers
    Karlsson, Linus
    Hell, Martin
    Stankovski, Paul
    ICISSP: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2017, : 225 - 232
  • [3] Greedy is not so bad
    Kalikow, S
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 1181 - 1189
  • [4] Regularized greedy column subset selection
    Ordozgoiti, Bruno
    Mozo, Alberto
    Garcia Lopez de Lacalle, Jesus
    INFORMATION SCIENCES, 2019, 486 : 393 - 418
  • [5] Enhanced Subset Greedy Multiuser Scheduling in Clustered Cell-Free Massive MIMO Systems
    Mashdour, Saeed
    de Lamare, Rodrigo C.
    Lima, Joao P. S. H.
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (02) : 610 - 614
  • [6] Greedy Binary Search and Feature Subset Selection
    Han, Myung-Mook
    Li, Dong-hui
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2009, 12 (06): : 1379 - 1395
  • [7] Transfer Learning Through Greedy Subset Selection
    Kuzborskij, Ilja
    Orabona, Francesco
    Caputo, Barbara
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 3 - 14
  • [8] Greedy Hypervolume Subset Selection in Low Dimensions
    Guerreiro, Andreia P.
    Fonseca, Carlos M.
    Paquete, Luis
    EVOLUTIONARY COMPUTATION, 2016, 24 (03) : 521 - 544
  • [9] Approximation Guarantees of Stochastic Greedy Algorithms for Subset Selection
    Qian, Chao
    Yu, Yang
    Tang, Ke
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1478 - 1484
  • [10] Random approximated greedy search for feature subset selection
    Gao, F
    Ho, YC
    ASIAN JOURNAL OF CONTROL, 2004, 6 (03) : 439 - 446