Not So Greedy: Enhanced Subset Exploration for Nonrandomness Detectors

被引:0
|
作者
Karlsson, Linus [1 ]
Hell, Martin [1 ]
Stankovski, Paul [1 ]
机构
[1] Lund Univ, Dept Elect & Informat Technol, POB 118, S-22100 Lund, Sweden
来源
关键词
Maximum degree monomial; Distinguisher; Nonrandomness detector; Grain-128a; Grain-128; Kreyvium;
D O I
10.1007/978-3-319-93354-2_13
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distinguishers and nonrandomness detectors are used to distinguish ciphertext from random data. In this paper, we focus on the construction of such devices using the maximum degree monomial test. This requires the selection of certain subsets of key and IV-bits of the cipher, and since this selection to a great extent affects the final outcome, it is important to make a good selection. We present a new, generic and tunable algorithm to find such subsets. Our algorithm works on any stream cipher, and can easily be tuned to the desired computational complexity. We test our algorithm with both different input parameters and different ciphers, namely Grain-128a, Kreyvium and Grain-128. Compared to a previous greedy approach, our algorithm consistently provides better results.
引用
下载
收藏
页码:273 / 294
页数:22
相关论文
共 50 条
  • [21] Advances in lunar exploration detectors
    胥涛
    欧阳自远
    李春来
    徐琳
    Acta Geochimica, 2005, (01) : 95 - 100
  • [22] Advances in lunar exploration detectors
    Xu Tao
    Ouyang Ziyuan
    Li Chunlai
    Xu Lin
    Chinese Journal of Geochemistry, 2005, 24 (1): : 95 - 100
  • [23] Advances in lunar exploration detectors
    Xu Tao
    Ouyang Ziyuan
    Li Chunlai
    Xu Lin
    ACTA GEOCHIMICA, 2005, 24 (01) : 95 - 100
  • [24] Greedy column subset selection for large-scale data sets
    Farahat, Ahmed K.
    Elgohary, Ahmed
    Ghodsi, Ali
    Kamel, Mohamed S.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 45 (01) : 1 - 34
  • [25] Greedy Approximated Hypervolume Subset Selection for Many-objective Optimization
    Shang, Ke
    Ishibuchi, Hisao
    Chen, Weiyu
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 448 - 456
  • [26] Greedy column subset selection for large-scale data sets
    Ahmed K. Farahat
    Ahmed Elgohary
    Ali Ghodsi
    Mohamed S. Kamel
    Knowledge and Information Systems, 2015, 45 : 1 - 34
  • [27] Large deviations for the greedy exploration process on configuration models
    Paola, Bermolen
    Valeria, Goicoechea
    Matthieu, Jonckheere
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [28] Heuristics for Greedy Transport Triggered Architecture Interconnect Exploration
    Viitanen, Timo
    Kultala, Heikki
    Jaaskelainen, Pekka
    Takala, Jarmo
    2014 INTERNATIONAL CONFERENCE ON COMPILERS, ARCHITECTURE AND SYNTHESIS FOR EMBEDDED SYSTEMS (CASES), 2014,
  • [29] DYNAMIC SUBSET SENSITIVITY ANALYSIS FOR DESIGN EXPLORATION
    Hinkle, Laura
    Pavlak, Gregory
    Brown, Nathan
    Curtis, Leland
    PROCEEDINGS OF THE 2022 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'22), 2022, : 581 - 592
  • [30] Lazy Greedy Hypervolume Subset Selection from Large Candidate Solution Sets
    Chen, Weiyu
    Ishibuchi, Hisao
    Shang, Ke
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,