Greedy Binary Search and Feature Subset Selection

被引:0
|
作者
Han, Myung-Mook [1 ]
Li, Dong-hui [1 ]
机构
[1] KyungWon Univ, Dept Comp Software, Coll IT, Songnam 461701, Kyunggi Do, South Korea
关键词
Feature selection; Classification; Data mining; Greedy binary search; ALGORITHMS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose new Greedy Binary Search methods, Greedy Binary Search (GBS) and Greedy Binary Search with Parameter(PGBS), to be used for feature selection problem. We describe the traditional algorithms including SFS (SBS), GSFS (GSBS), PTA (l, s) (GPTA (l, s)) and SFFS (SBFS). We also explain our proposed methods and compare them with the time complexity. Through a variety of experiments and analysis, it is found that our methods outperform traditional algorithms in terms of the number of features and the correct classification rate.
引用
收藏
页码:1379 / 1395
页数:17
相关论文
共 50 条
  • [1] Random approximated greedy search for feature subset selection
    Gao, F
    Ho, YC
    [J]. ASIAN JOURNAL OF CONTROL, 2004, 6 (03) : 439 - 446
  • [2] Binary Owl Search Algorithm for Feature Subset Selection
    Mandal, Ashis Kumar
    Sen, Rikta
    Chakraborty, Basabi
    [J]. 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2019), 2019, : 186 - 191
  • [3] Feature subset selection using improved binary gravitational search algorithm
    Rashedi, Esmat
    Nezamabadi-pour, Hossein
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) : 1211 - 1221
  • [4] Application of binary quantum-inspired gravitational search algorithm in feature subset selection
    Barani, Fatemeh
    Mirhosseini, Mina
    Nezamabadi-pour, Hossein
    [J]. APPLIED INTELLIGENCE, 2017, 47 (02) : 304 - 318
  • [5] Application of binary quantum-inspired gravitational search algorithm in feature subset selection
    Fatemeh Barani
    Mina Mirhosseini
    Hossein Nezamabadi-pour
    [J]. Applied Intelligence, 2017, 47 : 304 - 318
  • [6] Feature Subset Selection Using Binary Gravitational Search Algorithm for Intrusion Detection System
    Behjat, Amir Rajabi
    Mustapha, Aida
    Nezamabadi-pour, Hossein
    Sulaiman, Md. Nasir
    Mustapha, Norwati
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2013), PT II, 2013, 7803 : 377 - 386
  • [7] A thermodynamical search algorithm for feature subset selection
    Gonzalez, Felix F.
    Belanche, Lluis A.
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 683 - 692
  • [8] Feature subset selection by gravitational search algorithm optimization
    Han, XiaoHong
    Chang, XiaoMing
    Quan, Long
    Xiong, XiaoYan
    Li, JingXia
    Zhang, ZhaoXia
    Liu, Yi
    [J]. INFORMATION SCIENCES, 2014, 281 : 128 - 146
  • [9] The influence of search mechanisms in feature subset selection processes
    Nicoletti, Maria do Carmo
    Santoro, Daniel M.
    [J]. INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2008, 2 (04): : 231 - 238
  • [10] An improvement on floating search algorithms for feature subset selection
    Nakariyakul, Songyot
    Casasent, David P.
    [J]. PATTERN RECOGNITION, 2009, 42 (09) : 1932 - 1940