Greedy Hypervolume Subset Selection in Low Dimensions

被引:39
|
作者
Guerreiro, Andreia P. [1 ]
Fonseca, Carlos M. [1 ]
Paquete, Luis [1 ]
机构
[1] Univ Coimbra, Dept Informat Engn, CISUC, Polo 2, P-3030290 Coimbra, Portugal
关键词
Hypervolume indicator; multiobjective optimization; subset selection; monotone submodular function; greedy algorithm; ALGORITHM;
D O I
10.1162/EVCO_a_00188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a nondominated point set X subset of R-d of size n and a suitable reference point r is an element of R-d, the Hypervolume Subset Selection Problem (HSSP) consists of finding a subset of size k <= n that maximizes the hypervolume indicator. It arises in connection with multiobjective selection and archiving strategies, as well as Pareto-front approximation postprocessing for visualization and/or interaction with a decision maker. Efficient algorithms to solve the HSSP are available only for the 2-dimensional case, achieving a time complexity of O(n(k + log n)). In contrast, the best upper bound available for d > 2 is O(n(d/2) log n + n(n-k)). Since the hypervolume indicator is a monotone submodular function, the HSSP can be approximated to a factor of (1 - 1/e) using a greedy strategy. In this article, greedy O(n(k + log n))-time algorithms for the HSSP in 2 and 3 dimensions are proposed, matching the complexity of current exact algorithms for the 2-dimensional case, and considerably improving upon recent complexity results for this approximation problem.
引用
下载
收藏
页码:521 / 544
页数:24
相关论文
共 50 条
  • [1] Reference Point Specification for Greedy Hypervolume Subset Selection
    Shang, Ke
    Ishibuchi, Hisao
    Pang, Lie Meng
    Nan, Yang
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 168 - 175
  • [2] Greedy Decremental Quick Hypervolume Subset Selection Algorithms
    Jaszkiewicz, Andrzej
    Zielniewicz, Piotr
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT II, 2022, 13399 : 164 - 178
  • [3] Greedy Hypervolume Subset Selection in the Three-Objective Case
    Guerreiro, Andreia P.
    Fonseca, Carlos M.
    Paquete, Luis
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 671 - 678
  • [4] Hypervolume Subset Selection in Two Dimensions: Formulations and Algorithms
    Kuhn, Tobias
    Fonseca, Carlos M.
    Paquete, Luis
    Ruzika, Stefan
    Duarte, Miguel M.
    Figueira, Jose Rui
    EVOLUTIONARY COMPUTATION, 2016, 24 (03) : 411 - 425
  • [5] Greedy Approximated Hypervolume Subset Selection for Many-objective Optimization
    Shang, Ke
    Ishibuchi, Hisao
    Chen, Weiyu
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 448 - 456
  • [6] Lazy Greedy Hypervolume Subset Selection from Large Candidate Solution Sets
    Chen, Weiyu
    Ishibuchi, Hisao
    Shang, Ke
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [7] Experiments on Greedy and Local Search Heuristics for d-dimensional Hypervolume Subset Selection
    Basseur, Matthieu
    Derbel, Bilel
    Goeffon, Adrien
    Liefooghe, Arnaud
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 541 - 548
  • [8] Hypervolume Subset Selection with Small Subsets
    Groz, Benoit
    Maniu, Silviu
    EVOLUTIONARY COMPUTATION, 2019, 27 (04) : 611 - 637
  • [9] Implicit enumeration strategies for the hypervolume subset selection problem
    Gomes, Ricardo J.
    Guerreiro, Andreia P.
    Kuhn, Tobias
    Paquete, Luis
    COMPUTERS & OPERATIONS RESEARCH, 2018, 100 : 244 - 253
  • [10] Exact hypervolume subset selection through incremental computations
    Guerreiro, Andreia P.
    Manquinho, Vasco
    Figueira, Jose Rui
    COMPUTERS & OPERATIONS RESEARCH, 2021, 136