Greedy Hypervolume Subset Selection in Low Dimensions

被引:39
|
作者
Guerreiro, Andreia P. [1 ]
Fonseca, Carlos M. [1 ]
Paquete, Luis [1 ]
机构
[1] Univ Coimbra, Dept Informat Engn, CISUC, Polo 2, P-3030290 Coimbra, Portugal
关键词
Hypervolume indicator; multiobjective optimization; subset selection; monotone submodular function; greedy algorithm; ALGORITHM;
D O I
10.1162/EVCO_a_00188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a nondominated point set X subset of R-d of size n and a suitable reference point r is an element of R-d, the Hypervolume Subset Selection Problem (HSSP) consists of finding a subset of size k <= n that maximizes the hypervolume indicator. It arises in connection with multiobjective selection and archiving strategies, as well as Pareto-front approximation postprocessing for visualization and/or interaction with a decision maker. Efficient algorithms to solve the HSSP are available only for the 2-dimensional case, achieving a time complexity of O(n(k + log n)). In contrast, the best upper bound available for d > 2 is O(n(d/2) log n + n(n-k)). Since the hypervolume indicator is a monotone submodular function, the HSSP can be approximated to a factor of (1 - 1/e) using a greedy strategy. In this article, greedy O(n(k + log n))-time algorithms for the HSSP in 2 and 3 dimensions are proposed, matching the complexity of current exact algorithms for the 2-dimensional case, and considerably improving upon recent complexity results for this approximation problem.
引用
下载
收藏
页码:521 / 544
页数:24
相关论文
共 50 条
  • [21] Star discrepancy subset selection: Problem formulation and efficient approaches for low dimensions
    Clement, Francois
    Doerr, Carola
    Paquete, Luis
    JOURNAL OF COMPLEXITY, 2022, 70
  • [22] Greedy Column Subset Selection: New Bounds and Distributed Algorithms
    Altschuler, Jason
    Bhaskara, Aditya
    Fu, Gang
    Mirrokni, Vahab
    Rostamizadeh, Afshin
    Zadimoghaddam, Morteza
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [23] Non-monotonicity of Observed Hypervolume in 1-Greedy S-Metric Selection
    Judt, Leonard
    Mersmann, Olaf
    Naujoks, Boris
    JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS, 2013, 20 (5-6) : 277 - 290
  • [24] Improving Local Search Hypervolume Subset Selection in Evolutionary Multi-objective Optimization
    Nan, Yang
    Shang, Ke
    Ishibuchi, Hisao
    He, Linjun
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 751 - 757
  • [25] Greedy column subset selection for large-scale data sets
    Farahat, Ahmed K.
    Elgohary, Ahmed
    Ghodsi, Ali
    Kamel, Mohamed S.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 45 (01) : 1 - 34
  • [26] Greedy column subset selection for large-scale data sets
    Ahmed K. Farahat
    Ahmed Elgohary
    Ali Ghodsi
    Mohamed S. Kamel
    Knowledge and Information Systems, 2015, 45 : 1 - 34
  • [27] Don't be Greedy when Calculating Hypervolume Contributions
    Bringmann, Karl
    Friedrich, Tobias
    FOGA'09: PROCEEDINGS OF THE 10TH ACM SIGRVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, 2009, : 103 - 112
  • [28] Scattering hypervolume of fermions in two dimensions
    Wang, Zipeng
    Tan, Shina
    PHYSICAL REVIEW A, 2022, 106 (02)
  • [29] Computing Hypervolume Contributions in Low Dimensions: Asymptotically Optimal Algorithm and Complexity Results
    Emmerich, Michael T. M.
    Fonseca, Carlos M.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 121 - 135
  • [30] ENERGY AWARE GREEDY SUBSET SELECTION FOR SPEECH ENHANCEMENT IN WIRELESS ACOUSTIC SENSOR NETWORKS
    Szurley, Joseph
    Bertrand, Alexander
    Moonen, Marc
    Ruckebusch, Peter
    Moerman, Ingrid
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 789 - 793