Greedy Hypervolume Subset Selection in Low Dimensions

被引:39
|
作者
Guerreiro, Andreia P. [1 ]
Fonseca, Carlos M. [1 ]
Paquete, Luis [1 ]
机构
[1] Univ Coimbra, Dept Informat Engn, CISUC, Polo 2, P-3030290 Coimbra, Portugal
关键词
Hypervolume indicator; multiobjective optimization; subset selection; monotone submodular function; greedy algorithm; ALGORITHM;
D O I
10.1162/EVCO_a_00188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a nondominated point set X subset of R-d of size n and a suitable reference point r is an element of R-d, the Hypervolume Subset Selection Problem (HSSP) consists of finding a subset of size k <= n that maximizes the hypervolume indicator. It arises in connection with multiobjective selection and archiving strategies, as well as Pareto-front approximation postprocessing for visualization and/or interaction with a decision maker. Efficient algorithms to solve the HSSP are available only for the 2-dimensional case, achieving a time complexity of O(n(k + log n)). In contrast, the best upper bound available for d > 2 is O(n(d/2) log n + n(n-k)). Since the hypervolume indicator is a monotone submodular function, the HSSP can be approximated to a factor of (1 - 1/e) using a greedy strategy. In this article, greedy O(n(k + log n))-time algorithms for the HSSP in 2 and 3 dimensions are proposed, matching the complexity of current exact algorithms for the 2-dimensional case, and considerably improving upon recent complexity results for this approximation problem.
引用
下载
收藏
页码:521 / 544
页数:24
相关论文
共 50 条
  • [31] MULTIOBJECTIVE RANKING AND SELECTION BASED ON HYPERVOLUME
    Branke, Juergen
    Zhang, Wen
    Tao, Yang
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 859 - 870
  • [32] Fast Greedy Subset Selection From Large Candidate Solution Sets in Evolutionary Multiobjective Optimization
    Chen, Weiyu
    Ishibuchi, Hisao
    Shang, Ke
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (04) : 750 - 764
  • [33] Computing and Updating Hypervolume Contributions in Up to Four Dimensions
    Guerreiro, Andreia P.
    Fonseca, Carlos M.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (03) : 449 - 463
  • [34] Improved autistic spectrum disorder estimation using Cfs subset with greedy stepwise feature selection technique
    Sharma M.
    International Journal of Information Technology, 2022, 14 (3) : 1251 - 1261
  • [35] INEQUALITIES FOR THE GREEDY DIMENSIONS OF ORDERED SETS
    KIERSTEAD, HA
    TROTTER, WT
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 2 (02): : 145 - 164
  • [36] Discovering the Representative Subset with Low Redundancy for Hyperspectral Feature Selection
    Zhang, Wenqiang
    Li, Xiaorun
    Zhao, Liaoying
    REMOTE SENSING, 2019, 11 (11)
  • [37] An EMO algorithm using the hypervolume measure as selection criterion
    Emmerich, M
    Beume, N
    Naujoks, B
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 62 - 76
  • [38] Greedy algorithm, arithmetic progressions, subset sums and divisibility
    Erdos, P
    Lev, V
    Rauzy, G
    Sándor, C
    Sárközy, A
    DISCRETE MATHEMATICS, 1999, 200 (1-3) : 119 - 135
  • [39] Not So Greedy: Enhanced Subset Exploration for Nonrandomness Detectors
    Karlsson, Linus
    Hell, Martin
    Stankovski, Paul
    INFORMATION SYSTEMS SECURITY AND PRIVACY, 2018, 867 : 273 - 294
  • [40] Classification of greedy subset-sum-distinct-sequences
    Von Korff, J
    DISCRETE MATHEMATICS, 2003, 271 (1-3) : 271 - 282