Multiframings of 3-manifolds

被引:0
|
作者
Shimizu, Tatsuro [1 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
Framings of 3-manifolds; multisections; Hirzebruch defect; canonical framing; surgery;
D O I
10.1142/S0129167X20500627
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate multiframings of a closed oriented 3-manifold. We show that multiframings give a geometric realization of the tensor product of the homotopy set of framings and Q. We prove that the Hirzebruch defect defines a bijection from the homotopy set of multiframings to Q for any connected closed oriented 3-manifold, and we prove that any multiframing defined near the boundary of a compact oriented 3-manifold extends to the bounded manifold.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] On concordances in 3-manifolds
    Celoria, Daniele
    JOURNAL OF TOPOLOGY, 2018, 11 (01) : 180 - 200
  • [32] ON IMBEDDING 3-MANIFOLDS INTO 4-MANIFOLDS
    SHIOMI, T
    OSAKA JOURNAL OF MATHEMATICS, 1991, 28 (03) : 649 - 661
  • [33] Isometries of elliptic 3-manifolds
    McCullough, D
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 : 167 - 182
  • [34] REGULAR NEIGHBORHOODS OF 3-MANIFOLDS
    DIEFFENB.RM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 429 - &
  • [35] Macroscopic dimension of 3-manifolds
    Bolotov, DV
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2003, 6 (03) : 291 - 299
  • [36] ISOTOPIC DEFORMATION IN 3-MANIFOLDS
    SANDERSON, DE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (06) : 567 - 567
  • [37] Complexity of virtual 3-manifolds
    Vesnin, A. Yu.
    Turaev, V. G.
    Fominykh, E. A.
    SBORNIK MATHEMATICS, 2016, 207 (11) : 1493 - 1511
  • [38] How to see 3-manifolds
    Thurston, WP
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) : 2545 - 2571
  • [39] HOMOTOPY EQUIVALENCES OF 3-MANIFOLDS
    JOHANNSON, K
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (23): : 1009 - 1010
  • [40] Tunnel complexes of 3-manifolds
    Koda, Yuya
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (01): : 417 - 447