Multiframings of 3-manifolds

被引:0
|
作者
Shimizu, Tatsuro [1 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
Framings of 3-manifolds; multisections; Hirzebruch defect; canonical framing; surgery;
D O I
10.1142/S0129167X20500627
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate multiframings of a closed oriented 3-manifold. We show that multiframings give a geometric realization of the tensor product of the homotopy set of framings and Q. We prove that the Hirzebruch defect defines a bijection from the homotopy set of multiframings to Q for any connected closed oriented 3-manifold, and we prove that any multiframing defined near the boundary of a compact oriented 3-manifold extends to the bounded manifold.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] On the structure of closed 3-manifolds
    Mycielski, J
    FUNDAMENTA MATHEMATICAE, 2003, 177 (03) : 193 - 208
  • [42] Minimal crystallizations of 3-manifolds
    Basak, Biplab
    Datta, Basudeb
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [43] Cartesian powers of 3-manifolds
    Kwasik, Slawomir
    Schultz, Reinhard
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (01) : 176 - 191
  • [44] 3-Manifolds and VOA Characters
    Cheng, Miranda C. N.
    Chun, Sungbong
    Feigin, Boris
    Ferrari, Francesca
    Gukov, Sergei
    Harrison, Sarah M.
    Passaro, Davide
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
  • [45] The link volume of 3-manifolds
    Rieck, Yo'av
    Yamashita, Yasushi
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (02): : 927 - 958
  • [46] Intersection of surfaces in 3-manifolds
    Nowik, T
    TOPOLOGY AND ITS APPLICATIONS, 1999, 92 (01) : 15 - 61
  • [47] THE REDUCIBILITY OF SURGERED 3-MANIFOLDS
    WU, YQ
    TOPOLOGY AND ITS APPLICATIONS, 1992, 43 (03) : 213 - 218
  • [48] The loop product for 3-manifolds
    Abbaspour, H
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) : 713 - 718
  • [49] LOCALLY COLLAPSED 3-MANIFOLDS
    Kleiner, Bruce
    Lott, John
    ASTERISQUE, 2014, (365) : 7 - 99
  • [50] Isospectral Flat 3-Manifolds
    R. R. Isangulov
    Siberian Mathematical Journal, 2004, 45 : 894 - 914