Tunnel complexes of 3-manifolds

被引:2
|
作者
Koda, Yuya [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2011年 / 11卷 / 01期
关键词
HEEGAARD-SPLITTINGS; KNOT TUNNELS; SPACES;
D O I
10.2140/agt.2011.11.417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each closed 3-manifold M and natural number t, we define a simplicial complex T(t)(M), the t-tunnel complex, whose vertices are knots of tunnel number at most t. These complexes have a strong relation to disk complexes of handlebodies. We show that the complex T(t)(M) is connected for M the 3-sphere or a lens space. Using this complex, we define an invariant, the t-tunnel complexity, for tunnel number t knots. These invariants are shown to have a strong relation to toroidal bridge numbers and the hyperbolic structures.
引用
收藏
页码:417 / 447
页数:31
相关论文
共 50 条