AN IMPROVED BINARY SEARCH ALGORITHM FOR THE MULTIPLE-CHOICE KNAPSACK PROBLEM

被引:6
|
作者
He, Cheng [1 ]
Leung, Joseph Y-T. [2 ]
Lee, Kangbok [3 ]
Pinedo, Michael L. [4 ]
机构
[1] Henan Univ Technol, Sch Sci, Zhengzhou 450001, Henan, Peoples R China
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] CUNY York Coll, Dept Econ & Business, 94-20 Guy R Brewer Blvd, Jamaica, NY 11451 USA
[4] NYU, Stern Sch Business, Dept Informat Operat & Management Sci, 44 West 4th St, New York, NY 10012 USA
关键词
Multiple-Choice Knapsack Problem (MCKP); Approximate binary search algorithm; Worst-case performance ratio; Multiple-choice Multi-dimensional Knapsack Problem (MMKP);
D O I
10.1051/ro/2015061
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Multiple-Choice Knapsack Problem is defined as a 0-1 Knapsack Problem with additional disjoint multiple-choice constraints. Gens and Levner presented for this problem an approximate binary search algorithm with a worst case ratio of 5. We present an improved approximate binary search algorithm with a ratio of 3 + (1/2)(t) and a running time O(n(t + log m)), where n is the number of items, m the number of classes, and t a positive integer. We then extend our algorithm to make it also applicable to the Multiple-Choice Multidimensional Knapsack Problem with dimension d.
引用
收藏
页码:995 / 1001
页数:7
相关论文
共 50 条
  • [41] Lagrangian heuristic-based neighbourhood search for the multiple-choice multi-dimensional knapsack problem
    Hifi, Mhand
    Wu, Lei
    ENGINEERING OPTIMIZATION, 2015, 47 (12) : 1619 - 1636
  • [42] Efficient Algorithms with Performance Guarantees for the Stochastic Multiple-Choice Knapsack Problem
    Long Tran-Thanh
    Xia, Yingce
    Qin, Tao
    Jennings, Nicholas R.
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 403 - 409
  • [43] An Equivalent Model for Exactly Solving the Multiple-choice Multidimensional Knapsack Problem
    Hifi, Mhand
    Wu, Lei
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2012, 3 (03): : 43 - 58
  • [44] Solving the Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls
    Akbar, MM
    Rahman, MS
    Kaykobad, M
    Manning, EG
    Shoja, GC
    COMPUTERS & OPERATIONS RESEARCH, 2006, 33 (05) : 1259 - 1273
  • [45] Heuristic solutions for the multiple-choice multi-dimension knapsack problem
    Akbar, MM
    Manning, EG
    Shoja, GC
    Khan, S
    COMPUTATIONAL SCIENCE -- ICCS 2001, PROCEEDINGS PT 2, 2001, 2074 : 659 - 668
  • [46] Automatic Design of Reliable Systems Based on the Multiple-choice Knapsack Problem
    Lojda, Jakub
    Podivinsky, Jakub
    Cekan, Ondrej
    Panek, Richard
    Krcma, Martin
    Kotasek, Zdenek
    2020 23RD INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS 2020), 2020,
  • [47] A HYBRID DYNAMIC-PROGRAMMING BRANCH-AND-BOUND ALGORITHM FOR THE MULTIPLE-CHOICE KNAPSACK-PROBLEM
    DYER, ME
    RIHA, WO
    WALKER, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 58 (01) : 43 - 54
  • [48] Multiple-choice Knapsack Constraint in Graphical Models
    Montalbano, Pierre
    de Givry, Simon
    Katsirelos, George
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2022, 2022, 13292 : 282 - 299
  • [49] A multiprocessor based heuristic for multi-dimensional multiple-choice knapsack problem
    Abu Zafar M. Shahriar
    M. Mostofa Akbar
    M. Sohel Rahman
    Muhammad Abdul Hakim Newton
    The Journal of Supercomputing, 2008, 43 : 257 - 280
  • [50] A Scalable GPU-based Approach to Accelerate the Multiple-Choice Knapsack Problem
    Suri, Bharath
    Bordoloi, Unmesh D.
    Eles, Petru
    DESIGN, AUTOMATION & TEST IN EUROPE (DATE 2012), 2012, : 1126 - 1129