AN IMPROVED BINARY SEARCH ALGORITHM FOR THE MULTIPLE-CHOICE KNAPSACK PROBLEM

被引:6
|
作者
He, Cheng [1 ]
Leung, Joseph Y-T. [2 ]
Lee, Kangbok [3 ]
Pinedo, Michael L. [4 ]
机构
[1] Henan Univ Technol, Sch Sci, Zhengzhou 450001, Henan, Peoples R China
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] CUNY York Coll, Dept Econ & Business, 94-20 Guy R Brewer Blvd, Jamaica, NY 11451 USA
[4] NYU, Stern Sch Business, Dept Informat Operat & Management Sci, 44 West 4th St, New York, NY 10012 USA
关键词
Multiple-Choice Knapsack Problem (MCKP); Approximate binary search algorithm; Worst-case performance ratio; Multiple-choice Multi-dimensional Knapsack Problem (MMKP);
D O I
10.1051/ro/2015061
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Multiple-Choice Knapsack Problem is defined as a 0-1 Knapsack Problem with additional disjoint multiple-choice constraints. Gens and Levner presented for this problem an approximate binary search algorithm with a worst case ratio of 5. We present an improved approximate binary search algorithm with a ratio of 3 + (1/2)(t) and a running time O(n(t + log m)), where n is the number of items, m the number of classes, and t a positive integer. We then extend our algorithm to make it also applicable to the Multiple-Choice Multidimensional Knapsack Problem with dimension d.
引用
收藏
页码:995 / 1001
页数:7
相关论文
共 50 条