AN IMPROVED BINARY SEARCH ALGORITHM FOR THE MULTIPLE-CHOICE KNAPSACK PROBLEM

被引:6
|
作者
He, Cheng [1 ]
Leung, Joseph Y-T. [2 ]
Lee, Kangbok [3 ]
Pinedo, Michael L. [4 ]
机构
[1] Henan Univ Technol, Sch Sci, Zhengzhou 450001, Henan, Peoples R China
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] CUNY York Coll, Dept Econ & Business, 94-20 Guy R Brewer Blvd, Jamaica, NY 11451 USA
[4] NYU, Stern Sch Business, Dept Informat Operat & Management Sci, 44 West 4th St, New York, NY 10012 USA
关键词
Multiple-Choice Knapsack Problem (MCKP); Approximate binary search algorithm; Worst-case performance ratio; Multiple-choice Multi-dimensional Knapsack Problem (MMKP);
D O I
10.1051/ro/2015061
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Multiple-Choice Knapsack Problem is defined as a 0-1 Knapsack Problem with additional disjoint multiple-choice constraints. Gens and Levner presented for this problem an approximate binary search algorithm with a worst case ratio of 5. We present an improved approximate binary search algorithm with a ratio of 3 + (1/2)(t) and a running time O(n(t + log m)), where n is the number of items, m the number of classes, and t a positive integer. We then extend our algorithm to make it also applicable to the Multiple-Choice Multidimensional Knapsack Problem with dimension d.
引用
收藏
页码:995 / 1001
页数:7
相关论文
共 50 条
  • [21] Adaptive perturbed neighbourhood search for the expanding capacity multiple-choice knapsack problem
    Sbihi, A.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2013, 64 (10) : 1461 - 1473
  • [22] A new hybrid algorithm for the multiple-Choice multi-Dimensional knapsack problem
    Computer science department, Faculty of mathematics and computer science University of Science and Technology of Oran, 'Mohamed Boudiaf' USTO MB PO 1505 El M'naoeur, Bir el Djir, Oran, Algeria, Algeria
    WSEAS Trans. Inf. Sci. Appl., 2013, 7 (219-229):
  • [23] New ACO&PR algorithm for multiple-choice multidimensional knapsack problem
    Zhang, Xiao-Xia
    Tang, Li-Xin
    Kongzhi yu Juece/Control and Decision, 2009, 24 (05): : 729 - 733
  • [24] Modified Artificial Bee Colony Algorithm for Multiple-Choice Multidimensional Knapsack Problem
    Mkaouar, Arij
    Htiouech, Skander
    Chabchoub, Habib
    IEEE ACCESS, 2023, 11 : 45255 - 45269
  • [25] A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional Knapsack Problem
    Yang, Jaeyoung
    Kim, Yong-Hyuk
    Yoon, Yourim
    MATHEMATICS, 2022, 10 (04)
  • [26] Calculating the upper bound of the multiple-choice knapsack problem
    Nakagawa, Y
    Kitao, M
    Tsuji, M
    Teraoka, Y
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2001, 84 (07): : 22 - 27
  • [27] Heuristic algorithms for the multiple-choice multidimensional knapsack problem
    Hifi, M
    Michrafy, M
    Sbihi, A
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2004, 55 (12) : 1323 - 1332
  • [28] THE KNAPSACK-PROBLEM WITH DISJOINT MULTIPLE-CHOICE CONSTRAINTS
    AGGARWAL, V
    DEO, N
    SARKAR, D
    NAVAL RESEARCH LOGISTICS, 1992, 39 (02) : 213 - 227
  • [29] The multiple-choice multi-period knapsack problem
    Lin, EY
    Wu, CM
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2004, 55 (02) : 187 - 197
  • [30] A two-phase kernel search variant for the multidimensional multiple-choice knapsack problem
    Lamanna, Leonardo
    Mansini, Renata
    Zanotti, Roberto
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 297 (01) : 53 - 65