ADAPTIVE MULTI-STAGE PANSHARPENING CNN FOR HYPERSPECTRAL IMAGES

被引:0
|
作者
Xi, Dahan [1 ]
He, Lin [1 ]
Lai, Honghao [1 ]
机构
[1] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral images; CNN; scene heterogeneity; adaptive multi-stage pansharpening; FUSION;
D O I
10.1109/WHISPERS56178.2022.9955072
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Pansharpening for hyperspectral (HS) images is hindered by heterogeneous characteristics of observed scenes. Most of existing methods do not take into consideration such inherent characteristics, and handle all of observed scenes by means of the identical pansharpening strategy, resulting in potential over-pansharpenings on homogeneous scenes or under-pansharpenings on non-homogeneous scenes. To solve this problem, in this paper we propose a adaptive multi-stage pansharpening convolutional neural network (CNN), called AdapMSNet, which can adaptively select different upsampled paths for various observed scenes according to their heterogeneous characteristics. Experimental results have proven the effectiveness and the superior pansharpening performance of our method in terms of the spatial reconstruction and spectral restoration.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] TWO-STAGE FUSION BASED CNN FOR HYPERSPECTRAL PANSHARPENING
    Xie, Jinhua
    He, Lin
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1091 - 1094
  • [2] A Multi-stage Adaptive Binarization Scheme for Document Images
    Duan, Jiang
    Zhang, Mengyang
    Li, Qing
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS, 2009, : 867 - +
  • [3] A Multi-stage Noise Adaptive Switching Filter for Extremely Corrupted Images
    Dinh, Hai
    Adhami, Reza
    Wang, Yi
    SEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2015), 2015, 9631
  • [4] Partially blurred Images Restoration Using Adaptive Multi-Stage Approach
    Ragab, Ahmed N.
    Rehan, Mohamed M.
    Hassan, Yomna
    2016 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
  • [5] CNN Pruning with Multi-Stage Feature Decorrelation
    Zhu, Qiuyu
    Liu, Chengfei
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (15)
  • [6] PANSHARPENING OF HYPERSPECTRAL IMAGES IN URBAN AREAS
    Chisense, Chembe
    Engels, Johannes
    Hahn, Michael
    Guelch, Eberhard
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 387 - 392
  • [7] PCA-CNN Hybrid Approach for Hyperspectral Pansharpening
    Guarino, Giuseppe
    Ciotola, Matteo
    Vivone, Gemine
    Poggi, Giovanni
    Scarpa, Giuseppe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [8] HYBRID GSA-CNN METHOD FOR HYPERSPECTRAL PANSHARPENING
    Guarino, Giuseppe
    Ciotola, Matteo
    Poggi, Giovanni
    Vivone, Gemine
    Scarpa, Giuseppe
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 901 - 904
  • [9] CNN-Based Hyperspectral Pansharpening With Arbitrary Resolution
    He, Lin
    Zhu, Jiawei
    Li, Jun
    Plaza, Antonio
    Chanussot, Jocelyn
    Yu, Zhuliang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] AN UNSUPERVISED CNN-BASED HYPERSPECTRAL PANSHARPENING METHOD
    Guarino, G.
    Ciotola, M.
    Vivone, G.
    Poggi, G.
    Scarpa, G.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5982 - 5985