AN UNSUPERVISED CNN-BASED HYPERSPECTRAL PANSHARPENING METHOD

被引:0
|
作者
Guarino, G. [1 ]
Ciotola, M. [1 ]
Vivone, G. [2 ]
Poggi, G. [1 ]
Scarpa, G. [3 ]
机构
[1] Univ Federico II, I-80125 Naples, Italy
[2] CNR, IMAA, I-85050 Tito, Italy
[3] Univ Parthenope, I-80133 Naples, Italy
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Super-resolution; pansharpening; data fusion; convolutional neural network; hyperspectral image; FUSION; SUPERRESOLUTION; ENHANCEMENT; MS;
D O I
10.1109/IGARSS52108.2023.10282928
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This work proposes a simple yet effective method to adapt unsupervised convolutional neural networks for pansharpening of multispectral images to the problem of hyperspectral image pansharpening, i.e., the fusion of a single high-resolution panchromatic band with a low-resolution hyperspectral data cube. This is achieved by means of a PCA transformation which allows to compact the most of the HS image energy in a few bands, which are then suitably super-resolved using a pansharpening network designed for few spectral bands. Our experiments show very encouraging results which compare favorably against the state-of-the-art methods.
引用
收藏
页码:5982 / 5985
页数:4
相关论文
共 50 条
  • [1] CNN-Based Hyperspectral Pansharpening With Arbitrary Resolution
    He, Lin
    Zhu, Jiawei
    Li, Jun
    Plaza, Antonio
    Chanussot, Jocelyn
    Yu, Zhuliang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] BALANCING SPECTRAL AND SPATIAL QUALITY IN CNN-BASED UNSUPERVISED PANSHARPENING
    Ciotola, Matteo
    Guarino, Giuseppe
    Poggi, Giovanni
    Scarpa, Giuseppe
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1091 - 1094
  • [3] A CNN-BASED PANSHARPENING METHOD WITH PERCEPTUAL LOSS
    Vitale, Sergio
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3105 - 3108
  • [4] An Unsupervised CNN-Based Pansharpening Framework with Spectral-Spatial Fidelity Balance
    Ciotola, Matteo
    Guarino, Giuseppe
    Scarpa, Giuseppe
    REMOTE SENSING, 2024, 16 (16)
  • [5] Target-Adaptive CNN-Based Pansharpening
    Scarpa, Giuseppe
    Vitale, Sergio
    Cozzolino, Davide
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5443 - 5457
  • [6] MULTIBRANCH CNN-BASED PANSHARPENING WITH SKIP CONNECTION
    Larabi, Mohammed El Amin
    Karoui, Moussa Sofiane
    Chaib, Souleyman
    Bakhti, Khadidja
    Tchenar, Mohammed Ilyas
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 137 - 140
  • [7] HYBRID GSA-CNN METHOD FOR HYPERSPECTRAL PANSHARPENING
    Guarino, Giuseppe
    Ciotola, Matteo
    Poggi, Giovanni
    Vivone, Gemine
    Scarpa, Giuseppe
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 901 - 904
  • [8] A CROSS-SCALE LOSS FOR CNN-BASED PANSHARPENING
    Vitale, Sergio
    Scarpa, Giuseppe
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 645 - 648
  • [9] Unsupervised Spatial-Spectral CNN-Based Feature Learning for Hyperspectral Image Classification
    Zhang, Shuyu
    Xu, Meng
    Zhou, Jun
    Jia, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] A CNN-BASED MODEL FOR PANSHARPENING OF WORLDVIEW-3 IMAGES
    Vitale, Sergio
    Ferraioli, Giampaolo
    Scarpa, Giuseppe
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5108 - 5111