PCA-CNN Hybrid Approach for Hyperspectral Pansharpening

被引:11
|
作者
Guarino, Giuseppe [1 ]
Ciotola, Matteo [1 ]
Vivone, Gemine [2 ,3 ]
Poggi, Giovanni [1 ]
Scarpa, Giuseppe [4 ]
机构
[1] Univ Naples Federico II, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
[2] Inst Method ol Environm Anal CNR IMAA, Natl Res Council, I-85050 Tito, Italy
[3] Natl Biodivers Future Ctr NBFC, I-90133 Palermo, Italy
[4] Parthenope Univ Naples, Dept Engn, I-80143 Naples, Italy
关键词
Convolutional neural network (CNN); hyperspectral (HS) image; image fusion; pansharpening; principal component analysis (PCA); REGRESSION; FUSION; MS;
D O I
10.1109/LGRS.2023.3326204
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This work proposes a simple yet effective method to adapt unsupervised convolutional neural networks (CNNs) from multispectral (MS) to hyperspectral (HS) pansharpening. Thus, it focuses on the fusion of a single high-resolution panchromatic (PAN) band with a low-resolution HS data cube. This is achieved by means of a decorrelation transform, following the principal component analysis (PCA) approach, which enables the compression of a significant portion of the HS image energy into a few bands. Afterward, a suitably adapted pansharpening network designed for four spectral bands is used to super-resolve only the principal components (PCs). Experiments demonstrate high performance in both quantitative and qualitative evaluations, favorably comparing against state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] HYBRID GSA-CNN METHOD FOR HYPERSPECTRAL PANSHARPENING
    Guarino, Giuseppe
    Ciotola, Matteo
    Poggi, Giovanni
    Vivone, Gemine
    Scarpa, Giuseppe
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 901 - 904
  • [2] Hyperspectral pansharpening via improved PCA approach and optimal weighted fusion strategy
    Li, Yunsong
    Qu, Jiahui
    Dong, Wenqian
    Zheng, Yuxuan
    NEUROCOMPUTING, 2018, 315 : 371 - 380
  • [3] CNN-Based Hyperspectral Pansharpening With Arbitrary Resolution
    He, Lin
    Zhu, Jiawei
    Li, Jun
    Plaza, Antonio
    Chanussot, Jocelyn
    Yu, Zhuliang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] AN UNSUPERVISED CNN-BASED HYPERSPECTRAL PANSHARPENING METHOD
    Guarino, G.
    Ciotola, M.
    Vivone, G.
    Poggi, G.
    Scarpa, G.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5982 - 5985
  • [5] ADAPTIVE MULTI-STAGE PANSHARPENING CNN FOR HYPERSPECTRAL IMAGES
    Xi, Dahan
    He, Lin
    Lai, Honghao
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [6] TWO-STAGE FUSION BASED CNN FOR HYPERSPECTRAL PANSHARPENING
    Xie, Jinhua
    He, Lin
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1091 - 1094
  • [7] 基于PCA-CNN的动态短文本分析研究
    林寒冰
    金秀玲
    王婷
    林云霞
    科技创新与应用, 2022, 12 (11) : 44 - 48+52
  • [8] 基于PCA-CNN的滚动轴承故障诊断方法研究
    游达章
    陈林波
    张业鹏
    康亚伟
    张扬
    机床与液压, 2021, 49 (19) : 172 - 177
  • [9] IMPACT OF HYBRID PANSHARPENING APPROACHES APPLIED TO HYPERSPECTRAL IMAGES
    Licciardi, G.
    Veganzones, M. A.
    Vivone, G.
    Loncan, L.
    Chanussot, J.
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [10] 基于PCA-CNN模型的页岩储层有机碳含量预测方法
    管倩倩
    油气地质与采收率, 2022, 29 (06) : 49 - 57