ADAPTIVE MULTI-STAGE PANSHARPENING CNN FOR HYPERSPECTRAL IMAGES

被引:0
|
作者
Xi, Dahan [1 ]
He, Lin [1 ]
Lai, Honghao [1 ]
机构
[1] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou, Peoples R China
来源
2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2022年
基金
中国国家自然科学基金;
关键词
Hyperspectral images; CNN; scene heterogeneity; adaptive multi-stage pansharpening; FUSION;
D O I
10.1109/WHISPERS56178.2022.9955072
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Pansharpening for hyperspectral (HS) images is hindered by heterogeneous characteristics of observed scenes. Most of existing methods do not take into consideration such inherent characteristics, and handle all of observed scenes by means of the identical pansharpening strategy, resulting in potential over-pansharpenings on homogeneous scenes or under-pansharpenings on non-homogeneous scenes. To solve this problem, in this paper we propose a adaptive multi-stage pansharpening convolutional neural network (CNN), called AdapMSNet, which can adaptively select different upsampled paths for various observed scenes according to their heterogeneous characteristics. Experimental results have proven the effectiveness and the superior pansharpening performance of our method in terms of the spatial reconstruction and spectral restoration.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Serial crystallography with multi-stage merging of thousands of images
    Soares, Alexei S.
    Yamada, Yusuke
    Jakoncic, Jean
    McSweeney, Sean
    Sweet, Robert M.
    Skinner, John
    Foadi, James
    Fuchs, Martin R.
    Schneider, Dieter K.
    Shi, Wuxian
    Andi, Babak
    Andrews, Lawrence C.
    Bernstein, Herbert J.
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2022, 78 : 281 - 288
  • [32] An Enhanced Multi-Stage Approach for Dehazing Underwater Images
    Murugan, Tamilarasi Kathirvel
    Sharma, Shivansh
    Ganguly, Agniv
    Banerjee, Ashesh
    Kejriwal, Keshav
    IEEE ACCESS, 2024, 12 : 156803 - 156822
  • [33] IMIHCT: improved multi-stage image inpainting with hybrid CNN and transformer
    Ning, Tao
    Wang, Xingfang
    Ding, Hongwei
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [34] A Novel Weight-Shared Multi-Stage CNN for Scale Robustness
    Takahashi, Ryo
    Matsubara, Takashi
    Uehara, Kuniaki
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (04) : 1090 - 1101
  • [35] Multi-stage adaptive noise cancellation for ultrasonic NDE
    Kim, J
    Udpa, L
    Udpa, S
    NDT & E INTERNATIONAL, 2001, 34 (05) : 319 - 328
  • [36] Algorithms for the design of a multi-stage adaptive kanban system
    Sivakumar, G. D.
    Shahabudeen, P.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (23) : 6707 - 6738
  • [37] Multi-stage adaptive regression for online activity recognition
    Liu, Bangli
    Cai, Haibin
    Ju, Zhaojie
    Liu, Honghai
    PATTERN RECOGNITION, 2020, 98
  • [38] Stability properties of the adaptive horizon multi-stage MPC
    Mdoe, Zawadi
    Krishnamoorthy, Dinesh
    Jaschke, Johannes
    JOURNAL OF PROCESS CONTROL, 2023, 128
  • [39] A CNN-Based Multi-stage Framework for Renal Multi-structure Segmentation
    Liu, Yusheng
    Zhao, Zhongchen
    Wang, Lisheng
    LESION SEGMENTATION IN SURGICAL AND DIAGNOSTIC APPLICATIONS, MICCAI 2022, CURIOUS 2022, KIPA 2022, MELA 2022, 2023, 13648 : 18 - 26
  • [40] A multi-stage adaptive otsu thresholding algorithm for pore segmentation in rock thin-section images
    Yu, Chengzhen
    Wu, Wenhui
    Zheng, Jun
    Zeng, Wei
    Zheng, Dongyu
    Li, Zhiwu
    Chen, Caihua
    Wang, Sheng
    EARTH SCIENCE INFORMATICS, 2025, 18 (02)