Fully automatic multi-temporal land cover classification using Sentinel-2 image data

被引:14
|
作者
Baamonde, Sergio [1 ,2 ]
Cabana, Martino [3 ]
Sillero, Neftali [4 ]
Penedo, Manuel G. [1 ,2 ]
Naveira, Horacio [3 ]
Novo, Jorge [1 ,2 ]
机构
[1] Univ A Coruna, Dept Comp Sci, La Coruna 15071, Spain
[2] Univ A Coruna, CITIC Res Ctr Informat & Commun Technol, La Coruna 15071, Spain
[3] Univ A Coruna, Fac Sci, Dept Biol, La Coruna, Spain
[4] Univ Porto, Ctr Invest Ciencias Geoespaciais, CICGE, Fac Ciencias, Porto, Portugal
关键词
Remote sensing; Sentinel-2; Land cover classification; Machine learning; BIG DATA; CROP;
D O I
10.1016/j.procs.2019.09.220
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The analysis of remote sensing images represents a highly important issue to be performed in many relevant fields such as climate change studies or land cover mapping. Traditional proposals usually identify the land cover classes from general related groups such as different tree species or different crop varieties. Additionally, these proposals commonly use information from a precise time span or season, not accounting for the variability of the data over the entire year, specially in regions with several seasons. In this work, we propose a multi-temporal classification system to identify and represent diverse land cover classes over any period of the entire year by using Sentinel-2 satellite image data. To this end, 526 representative samples were labelled from 5 complex and variable different land cover types over the Special Area of Conservation (SAC) Betanzos Mandeo in the northwest of the Iberian Peninsula. The method achieves a satisfactory mean accuracy value of 84.0% for the testing set using the best configuration with a radial Support Vector Machine classifier. This system will be used in the study of the population connectivity of two threatened herptiles, but it can be easily extended to other species of interest in the future. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:650 / 657
页数:8
相关论文
共 50 条
  • [21] Image Classification and Land Cover Mapping Using Sentinel-2 Imagery: Optimization of SVM Parameters
    Yousefi, Saleh
    Mirzaee, Somayeh
    Almohamad, Hussein
    Al Dughairi, Ahmed Abdullah
    Gomez, Christopher
    Siamian, Narges
    Alrasheedi, Mona
    Abdo, Hazem Ghassan
    [J]. LAND, 2022, 11 (07)
  • [22] DeepForest: Novel Deep Learning Models for Land Use and Land Cover Classification Using Multi-Temporal and -Modal Sentinel Data of the Amazon Basin
    Cherif, Eya
    Hell, Maximilian
    Brandmeier, Melanie
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [23] Multi-temporal polarimetry in land-cover classification
    Wozniak, Edyta
    Kofman, Wlodek
    Lewinski, Stanislaw
    Wajer, Pawel
    Rybicki, Marcin
    Aleksandrowicz, Sebastian
    Wlodarkiewicz, Adam
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (22) : 8182 - 8199
  • [24] Assessing the spatial variation of cropping intensity using multi-temporal Sentinel-2 data by rule-based classification
    Argha Ghosh
    Manoj K. Nanda
    Debolina Sarkar
    [J]. Environment, Development and Sustainability, 2022, 24 : 10829 - 10851
  • [25] Assessing the spatial variation of cropping intensity using multi-temporal Sentinel-2 data by rule-based classification
    Ghosh, Argha
    Nanda, Manoj K.
    Sarkar, Debolina
    [J]. ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2022, 24 (09) : 10829 - 10851
  • [26] LAND COVER CLASSIFICATION BY SUPPORT VECTOR MACHINES USING MULTI-TEMPORAL POLARIMETRIC SAR DATA
    Feng, Qi
    Chen, Er-xue
    Li, Zengyuan
    Guo, Ying
    Zhou, Wei
    Li, Weimei
    Xu, Guangcai
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6244 - 6246
  • [27] Quantifying understory vegetation density using multi-temporal Sentinel-2 and GEDI LiDAR data
    Xi, Yanbiao
    Tian, Qingjiu
    Zhang, Wenmin
    Zhang, Zhichao
    Tong, Xiaoye
    Brandt, Martin
    Fensholt, Rasmus
    [J]. GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 2068 - 2083
  • [28] Maize and sorghum field segregation using multi-temporal Sentinel-2 data in central Mexico
    Soler-Perez-Salazar, Maria J.
    Ortega-Garcia, Nicolas
    Vaca-Mier, Mabel
    Cram-Hyedric, Silke
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (02)
  • [29] Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
    M. Usman
    R. Liedl
    M. A. Shahid
    A. Abbas
    [J]. Journal of Geographical Sciences, 2015, 25 : 1479 - 1506
  • [30] Can a Hierarchical Classification of Sentinel-2 Data Improve Land Cover Mapping?
    Wasniewski, Adam
    Hoscilo, Agata
    Chmielewska, Milena
    [J]. REMOTE SENSING, 2022, 14 (04)