Assessing the spatial variation of cropping intensity using multi-temporal Sentinel-2 data by rule-based classification

被引:0
|
作者
Argha Ghosh
Manoj K. Nanda
Debolina Sarkar
机构
[1] Department of Agricultural Meteorology and Physics,
关键词
Cropping intensity; Gangetic plain zone; Sentinel-2; NDVI; Rule-based classification;
D O I
暂无
中图分类号
学科分类号
摘要
The present study was conducted to analyze cropping intensity of four blocks (Mogra-Chinsurah, Polba-Dadpur, Singur and Haripal) of the Gangetic alluvial zone of India using multi-dated Sentinel-2 data in 2018–19 cropping year. It was observed that during peak growing stage all crops ascribed higher Normalized Difference Vegetation Index NDVI values (0.4 to 0.73) and NDVI became as low as 0.06 when the fields were vacant. Sentinel-2 data acquired in the peak crop growing period during each cropping season were carefully selected, and NDVI was computed over the whole study area. Rule-based classification was applied for cropping sequence and cropping intensity classification based on the occurrence and non-occurrence of crops using NDVI threshold (0.4). Sentinel-2 images acquired on 22/10/2018, 6/12/2018, 30/1/2019 and 30/4/2019 were used for masking of trees and non-agricultural area. October 22, January 30 and April 30 imageries demonstrated peak crop growing period during kharif, rabi and pre-kharif seasons whereas December 6 image represented occurrence of no or little crop in the study area. Crop acreage was the highest in Polba-Dadpur block during all the three seasons. The crop–fallow—crop sequence occupied the highest areas (43%) followed by crop–crop–crop sequence (39%). 50% and 39% of the total cultivated land was under 200% and 300% cropping intensities. Overall, accuracies of cropping system and cropping intensity classification were 88.54% and 87.85%, respectively. Sentinel-2 data can be successfully used for cropping system analysis which helps in crop planning and management.
引用
收藏
页码:10829 / 10851
页数:22
相关论文
共 50 条
  • [1] Assessing the spatial variation of cropping intensity using multi-temporal Sentinel-2 data by rule-based classification
    Ghosh, Argha
    Nanda, Manoj K.
    Sarkar, Debolina
    [J]. ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2022, 24 (09) : 10829 - 10851
  • [2] Tree Species Classification with Multi-Temporal Sentinel-2 Data
    Persson, Magnus
    Lindberg, Eva
    Reese, Heather
    [J]. REMOTE SENSING, 2018, 10 (11)
  • [3] Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation
    Wakulinska, Martyna
    Marcinkowska-Ochtyra, Adriana
    [J]. REMOTE SENSING, 2020, 12 (17)
  • [4] SENTINEL-2 MULTI-TEMPORAL DATA FOR RICE CROP CLASSIFICATION IN NEPAL
    Baidar, Tina
    Fernandez-Beltran, Ruben
    Pla, Filiberto
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4259 - 4262
  • [5] Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China
    Yi, Zhiwei
    Jia, Li
    Chen, Qiting
    [J]. REMOTE SENSING, 2020, 12 (24) : 1 - 21
  • [6] Fully automatic multi-temporal land cover classification using Sentinel-2 image data
    Baamonde, Sergio
    Cabana, Martino
    Sillero, Neftali
    Penedo, Manuel G.
    Naveira, Horacio
    Novo, Jorge
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 650 - 657
  • [7] WILDFIRE DAMAGE ASSESSMENT USING MULTI-TEMPORAL SENTINEL-2 DATA
    Chung, M.
    Jung, M.
    Kim, Y.
    [J]. ISPRS ICWG III/IVA GI4DM 2019 - GEOINFORMATION FOR DISASTER MANAGEMENT, 2019, 42-3 (W8): : 97 - 102
  • [8] Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    Lu, Yi
    Boschetti, Mirco
    Nelson, Andrew
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 243 (243)
  • [9] Phenology-based winter wheat classification for crop growth monitoring using multi-temporal sentinel-2 satellite data
    Newete, Solomon W.
    Abutaleb, Khaled
    Chirima, George J
    Dabrowska-Zielinska, Katarzyna
    Gurdak, Radoslaw
    [J]. Egyptian Journal of Remote Sensing and Space Science, 2024, 27 (04): : 695 - 704
  • [10] Deep Seasonal Network for Remote Sensing Imagery Classification of Multi-Temporal Sentinel-2 Data
    Cheng, Keli
    Scott, Grant J.
    [J]. REMOTE SENSING, 2023, 15 (19)