SENTINEL-2 MULTI-TEMPORAL DATA FOR RICE CROP CLASSIFICATION IN NEPAL

被引:1
|
作者
Baidar, Tina [1 ]
Fernandez-Beltran, Ruben [1 ]
Pla, Filiberto [1 ]
机构
[1] Univ Jaume 1, Inst New Imaging Technol, Castellon De La Plana 12071, Spain
关键词
Sentinel-2 (S2); rice crop classification; deep learning; convolutional neural networks (CNN); PLANTING AREA; LAND-COVER;
D O I
10.1109/IGARSS39084.2020.9323771
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The global coverage of Sentinel-2 provides widespread opportunities for accurately mapping and monitoring key crops in emerging countries, like in the case of Nepal's rice production. While previous studies based on other satellites show some important spatial and temporal limitations, the use of operational Sentinel-2 data still remains unexplored in this regard. As a result, this work investigates the viability of using the Sentinel-2 instrument for a precise rice crop classification in Nepal. Initially, we define a dataset made of multi-temporal Sentinel-2 data from the Terai region of Nepal. Then, we conduct several classification experiments to provide empirical evidences about the suitability of different classification models when identifying rice crops in developing countries, where only limited ground-truth data could be available. The experiments reveal the suitability of using Sentinel-2 for accurately mapping rice crops in Nepal with a CNN-based classification model.
引用
收藏
页码:4259 / 4262
页数:4
相关论文
共 50 条
  • [1] Tree Species Classification with Multi-Temporal Sentinel-2 Data
    Persson, Magnus
    Lindberg, Eva
    Reese, Heather
    [J]. REMOTE SENSING, 2018, 10 (11)
  • [2] Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation
    Wakulinska, Martyna
    Marcinkowska-Ochtyra, Adriana
    [J]. REMOTE SENSING, 2020, 12 (17)
  • [3] Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China
    Yi, Zhiwei
    Jia, Li
    Chen, Qiting
    [J]. REMOTE SENSING, 2020, 12 (24) : 1 - 21
  • [4] How much does multi-temporal Sentinel-2 data improve crop type classification?
    Vuolo, Francesco
    Neuwirth, Martin
    Immitzer, Markus
    Atzberger, Clement
    Ng, Wai-Tim
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 72 : 122 - 130
  • [5] Rice-Yield Prediction with Multi-Temporal Sentinel-2 Data and 3D CNN: A Case Study in Nepal
    Fernandez-Beltran, Ruben
    Baidar, Tina
    Kang, Jian
    Pla, Filiberto
    [J]. REMOTE SENSING, 2021, 13 (07)
  • [6] Fully automatic multi-temporal land cover classification using Sentinel-2 image data
    Baamonde, Sergio
    Cabana, Martino
    Sillero, Neftali
    Penedo, Manuel G.
    Naveira, Horacio
    Novo, Jorge
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 650 - 657
  • [7] Deep Seasonal Network for Remote Sensing Imagery Classification of Multi-Temporal Sentinel-2 Data
    Cheng, Keli
    Scott, Grant J.
    [J]. REMOTE SENSING, 2023, 15 (19)
  • [8] Fusion of Multi-Temporal PAZ and Sentinel-1 Data for Crop Classification
    Busquier, Mario
    Valcarce-Dineiro, Ruben
    Lopez-Sanchez, Juan M.
    Plaza, Javier
    Sanchez, Nilda
    Arias-Perez, Benjamin
    [J]. REMOTE SENSING, 2021, 13 (19)
  • [9] WILDFIRE DAMAGE ASSESSMENT USING MULTI-TEMPORAL SENTINEL-2 DATA
    Chung, M.
    Jung, M.
    Kim, Y.
    [J]. ISPRS ICWG III/IVA GI4DM 2019 - GEOINFORMATION FOR DISASTER MANAGEMENT, 2019, 42-3 (W8): : 97 - 102
  • [10] Extraction of Crop Planting Structure in County Based on Multi-temporal Images of Sentinel-2
    Li, Zhengqian
    Xiong, Feng
    [J]. 2020 ASIA CONFERENCE ON GEOLOGICAL RESEARCH AND ENVIRONMENTAL TECHNOLOGY, 2021, 632