SENTINEL-2 MULTI-TEMPORAL DATA FOR RICE CROP CLASSIFICATION IN NEPAL

被引:1
|
作者
Baidar, Tina [1 ]
Fernandez-Beltran, Ruben [1 ]
Pla, Filiberto [1 ]
机构
[1] Univ Jaume 1, Inst New Imaging Technol, Castellon De La Plana 12071, Spain
关键词
Sentinel-2 (S2); rice crop classification; deep learning; convolutional neural networks (CNN); PLANTING AREA; LAND-COVER;
D O I
10.1109/IGARSS39084.2020.9323771
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The global coverage of Sentinel-2 provides widespread opportunities for accurately mapping and monitoring key crops in emerging countries, like in the case of Nepal's rice production. While previous studies based on other satellites show some important spatial and temporal limitations, the use of operational Sentinel-2 data still remains unexplored in this regard. As a result, this work investigates the viability of using the Sentinel-2 instrument for a precise rice crop classification in Nepal. Initially, we define a dataset made of multi-temporal Sentinel-2 data from the Terai region of Nepal. Then, we conduct several classification experiments to provide empirical evidences about the suitability of different classification models when identifying rice crops in developing countries, where only limited ground-truth data could be available. The experiments reveal the suitability of using Sentinel-2 for accurately mapping rice crops in Nepal with a CNN-based classification model.
引用
收藏
页码:4259 / 4262
页数:4
相关论文
共 50 条
  • [31] Evaluating capabilities of machine learning algorithms for aquatic vegetation classification in temperate wetlands using multi-temporal Sentinel-2 data
    Piaser, Erika
    Villa, Paolo
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 117
  • [32] FARM: A fully automated rice mapping framework combining Sentinel-1 SAR and Sentinel-2 multi-temporal imagery
    Gao, Yuan
    Pan, Yaozhong
    Zhu, Xiufang
    Li, Le
    Ren, Shoujia
    Zhao, Chuanwu
    Zheng, Xuechang
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [33] Exploring the Optimal Feature Combination of Tree Species Classification by Fusing Multi-Feature and Multi-Temporal Sentinel-2 Data in Changbai Mountain
    Wang, Mingchang
    Li, Mingjie
    Wang, Fengyan
    Ji, Xue
    [J]. FORESTS, 2022, 13 (07):
  • [34] Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data
    Bjerreskov, Kristian Skau
    Nord-Larsen, Thomas
    Fensholt, Rasmus
    [J]. REMOTE SENSING, 2021, 13 (05) : 1 - 19
  • [35] Multi-Temporal Sentinel-1 SAR and Sentinel-2 MSI Data for Flood Mapping and Damage Assessment in Mozambique
    Nhangumbe, Manuel
    Nascetti, Andrea
    Ban, Yifang
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (02)
  • [36] Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data
    Hoscilo, Agata
    Lewandowska, Aneta
    [J]. REMOTE SENSING, 2019, 11 (08)
  • [37] Evaluation of multi-temporal sentinel-2 capabilities for estimation of leaf chlorophyll concentration
    Morgan, R. S.
    Faisal, M.
    Atta, Y.
    Rahim, I. S.
    [J]. BIOSCIENCE RESEARCH, 2018, 15 (03): : 2534 - 2541
  • [38] New Workflow of Plastic-Mulched Farmland Mapping using Multi-Temporal Sentinel-2 data
    Hao, Pengyu
    Chen, Zhongxin
    Tang, Huajun
    Li, Dandan
    Li, He
    [J]. REMOTE SENSING, 2019, 11 (11)
  • [39] HIGH LATITUDE MULTI-TEMPORAL DIGITAL SURFACE MODELS FROM SENTINEL-2 DATA: A PROOF OF CONCEPT
    Michel, J.
    Cournet, M.
    Delvit, J. M.
    Languille, F.
    Gaudel-Vacaresse, A.
    Youssefi, D.
    Palmann, C.
    Poulain, V
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5858 - 5861
  • [40] Multi-Temporal Sentinel-1 and Sentinel-2 Data for Orchards Discrimination in Khairpur District, Pakistan Using Spectral Separability Analysis and Machine Learning Classification
    Rehman, Arif Ur
    Zhang, Lifu
    Sajjad, Meer Muhammad
    Raziq, Abdur
    [J]. REMOTE SENSING, 2024, 16 (04)