Quantifying understory vegetation density using multi-temporal Sentinel-2 and GEDI LiDAR data

被引:9
|
作者
Xi, Yanbiao [1 ,2 ,3 ]
Tian, Qingjiu [1 ,3 ]
Zhang, Wenmin [2 ]
Zhang, Zhichao [1 ,3 ]
Tong, Xiaoye [2 ]
Brandt, Martin [2 ]
Fensholt, Rasmus [2 ]
机构
[1] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
[2] Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark
[3] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Understory vegetation; GEDI LiDAR data; plant area volume density; support vector regression; LEAF-AREA INDEX; RED-EDGE BANDS; SPECTRAL REFLECTANCE; FOREST; LAI; CHLOROPHYLL; CLASSIFICATION; GREEN; CROP;
D O I
10.1080/15481603.2022.2148338
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Understory vegetation contributes considerably to biodiversity and total aboveground biomass of forest ecosystems. Whereas field inventories and LiDAR data are generally used to estimate understory vegetation density, methods for large-scale and spatially continuous estimation of understory vegetation density are still lacking. For an evergreen coniferous forest area in southern China, we developed and tested an effective and practical remote sensing-driven approach for mapping understory vegetation, based on phenological differences between over and understory vegetation. Specifically, we used plant area volume density (PAVD) calculations based on GEDI data to train a support vector regression model and subsequently estimated the understory vegetation density from Sentinel-2 derived metrics. We produced maps of PAVD for the growing and non-growing season respectively, both performing well compared against independent GEDI samples (R-2 = 0.89 and 0.93, p < 0.01). Understory vegetation density was derived from the differences in PAVD between the growing and non-growing season. The understory vegetation density map was validated against field samples from 86 plots showing an overall R-2 of 0.52 (p < 0.01), rRMSE = 21%. Our study developed a tangible approach to map spatially continuous understory vegetation density with the combination of GEDI LiDAR data and Sentinel-2 imagery, showing the potential to improve the estimation of terrestrial carbon storage and better understand forest ecosystem processes across larger areas.
引用
下载
收藏
页码:2068 / 2083
页数:16
相关论文
共 50 条
  • [1] Quantifying Temperate Forest Diversity by Integrating GEDI LiDAR and Multi-Temporal Sentinel-2 Imagery
    Ren, Chunying
    Jiang, Hailing
    Xi, Yanbiao
    Liu, Pan
    Li, Huiying
    REMOTE SENSING, 2023, 15 (02)
  • [2] Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation
    Wakulinska, Martyna
    Marcinkowska-Ochtyra, Adriana
    REMOTE SENSING, 2020, 12 (17)
  • [3] WILDFIRE DAMAGE ASSESSMENT USING MULTI-TEMPORAL SENTINEL-2 DATA
    Chung, M.
    Jung, M.
    Kim, Y.
    ISPRS ICWG III/IVA GI4DM 2019 - GEOINFORMATION FOR DISASTER MANAGEMENT, 2019, 42-3 (W8): : 97 - 102
  • [4] Tree Species Classification with Multi-Temporal Sentinel-2 Data
    Persson, Magnus
    Lindberg, Eva
    Reese, Heather
    REMOTE SENSING, 2018, 10 (11)
  • [5] Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    Lu, Yi
    Boschetti, Mirco
    Nelson, Andrew
    REMOTE SENSING OF ENVIRONMENT, 2020, 243 (243)
  • [6] A new approach for biocrust and vegetation monitoring in drylands using multi-temporal Sentinel-2 images
    Panigada, Cinzia
    Tagliabue, Giulia
    Zaady, Eli
    Rozenstein, Offer
    Garzonio, Roberto
    Di Mauro, Biagio
    De Amicis, Mattia
    Colombo, Roberto
    Cogliati, Sergio
    Miglietta, Franco
    Rossini, Micol
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2019, 43 (04): : 496 - 520
  • [7] SENTINEL-2 MULTI-TEMPORAL DATA FOR RICE CROP CLASSIFICATION IN NEPAL
    Baidar, Tina
    Fernandez-Beltran, Ruben
    Pla, Filiberto
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4259 - 4262
  • [8] Combining multi-temporal airborne LiDAR and Sentinel-2 multispectral data for assessment of disturbances and recovery of mangrove forests
    Li, Qiaosi
    Bonebrake, Timothy C.
    Michalski, Joseph R.
    Wong, Frankie Kwan Kit
    Fung, Tung
    ESTUARINE COASTAL AND SHELF SCIENCE, 2023, 291
  • [9] Evaluating capabilities of machine learning algorithms for aquatic vegetation classification in temperate wetlands using multi-temporal Sentinel-2 data
    Piaser, Erika
    Villa, Paolo
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 117
  • [10] Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China
    Yi, Zhiwei
    Jia, Li
    Chen, Qiting
    REMOTE SENSING, 2020, 12 (24) : 1 - 21