The polynomial degree of the Grassmannian G1,n,2

被引:0
|
作者
Shaw, R [1 ]
Gordon, NA
机构
[1] Univ Hull, Dept Math, Kingston Upon Hull HU6 7RX, N Humberside, England
[2] Univ Hull, Dept Comp Sci, Kingston Upon Hull HU6 7RX, N Humberside, England
关键词
polynomial degree; subsets of PG(N; 2); Grassmannian G(1; n;
D O I
10.1007/s10623-005-4524-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a subset psi of PG(N, 2) a known result states that psi has polynomial degree <= r, r <= N, if and only if psi intersects every r-flat of PG(N, 2) in an odd number of points. Certain refinements of this result are considered, and are then applied in the case when psi is the Grassmannian G (l, n, 2) subset of PG (N, 2), N = ((n+ 1)(2)) -1, to show that for n < 8 the polynomial degree of G (l, n, 2) is ((n)(2))- 1.
引用
收藏
页码:289 / 306
页数:18
相关论文
共 50 条
  • [11] Linear methods for G1, G2, and G3-Multi-degree reduction of Bezier curves
    Rababah, Abedallah
    Mann, Stephen
    COMPUTER-AIDED DESIGN, 2013, 45 (02) : 405 - 414
  • [12] Torus quotients of Schubert varieties in the Grassmannian G2,n
    Kannan, S. Senthamarai
    Nayek, Arpita
    Saha, Pinakinath
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01): : 273 - 293
  • [13] Standard conjectures for the arithmetic Grassmannian G(2,N) and Racah polynomials
    Kresch, A
    Tamvakis, H
    DUKE MATHEMATICAL JOURNAL, 2001, 110 (02) : 359 - 376
  • [14] Bifurcation of limit cycles for a perturbed polynomial system with 2n+1 degree
    Yang, Chen-xi
    Tang, Min-ying
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 1380 - 1384
  • [15] Uniform (d+1)-bundle over the Grassmannian G(d, n)
    Du, Rong
    Zhou, Yuhang
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2025, 36 (04)
  • [16] Generalized Theorem for the G1(c, n) Numbers
    Georgieva-Grosse, Mariana Nikolova
    Georgiev, Georgi Nikolov
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 513 - 518
  • [17] Yeast G1 cyclins are unstable in G1 phase
    Schneider, BL
    Patton, EE
    Lanker, S
    Mendenhall, MD
    Wittenberg, C
    Futcher, B
    Tyers, M
    NATURE, 1998, 395 (6697) : 86 - 89
  • [18] Yeast G1 cyclins are unstable in G1 phase
    Brandt L. Schneider
    E. Elizabeth Patton
    Stefan Lanker
    Michael D. Mendenhall
    Curt Wittenberg
    Bruce Futcher
    Mike Tyers
    Nature, 1998, 395 : 86 - 89
  • [19] Counting partitions of Gn,1/2$$ {G}_{n,1/2} $$ with degree congruence conditions
    Balister, Paul
    Powierski, Emil
    Scott, Alex
    Tan, Jane
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (03) : 564 - 584
  • [20] The product of divisibility groups (G1, O1) x (G2, O2) with G1 finitely generated
    Lequain, Yves
    JOURNAL OF ALGEBRA, 2008, 319 (07) : 2979 - 2993