Bifurcation of limit cycles for a perturbed polynomial system with 2n+1 degree

被引:0
|
作者
Yang, Chen-xi [1 ]
Tang, Min-ying [1 ]
机构
[1] Yuxi Normal Coll, Dept Math, Yuxi 653100, Yunnan Province, Peoples R China
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a qualitative analysis method was used to study the bifurcation and stability of limit cycles for a perturbed polynomial system with 2n+1 degree. Two theorems and an example were proved.
引用
收藏
页码:1380 / 1384
页数:5
相关论文
共 50 条
  • [1] The criterion of the center-focus for a class of planar perturbed polynomial systems with (2n+1)th degree
    Wu, Cheng-qiang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (02) : 732 - 739
  • [2] Bifurcation of limit cycles in a cubic Hamiltonian system with perturbed terms
    Hong, Xiao-Chun
    Qin, Qing-Hua
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 12 - 16
  • [3] Bifurcation of limit cycles in quadratic Hamiltonian systems with various degree polynomial perturbations
    Yu, P.
    Han, M.
    [J]. CHAOS SOLITONS & FRACTALS, 2012, 45 (06) : 772 - 794
  • [4] Center problem and the bifurcation of limit cycles for a cubic polynomial system
    Du, Chaoxiong
    Huang, Wentao
    Zhang, Qi
    [J]. APPLIED MATHEMATICAL MODELLING, 2015, 39 (17) : 5200 - 5215
  • [5] Limit cycles of polynomial differential systems of degree 1 and 2 on the cylinder
    Johana Jimenez
    Jaume Llibre
    [J]. São Paulo Journal of Mathematical Sciences, 2023, 17 : 679 - 691
  • [6] Bifurcation of limit cycles at the equator for a class of polynomial differential system
    Zhang, Qi
    Gui Weihua
    Liu, Yirong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) : 1042 - 1047
  • [7] Limit cycles of polynomial differential systems of degree 1 and 2 on the cylinder
    Jimenez, Johana
    Llibre, Jaume
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 679 - 691
  • [8] The center conditions and bifurcation of limit cycles at the infinity for a cubic polynomial system
    Zhang, Lina
    Liu, Yirong
    Jiang, Xuejiao
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) : 1360 - 1370
  • [9] Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11
    Wang, S.
    Yu, P.
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (03) : 606 - 621
  • [10] Linear estimate for the number of limit cycles of a perturbed cubic polynomial differential system
    Llibre, Jaume
    Wu, Hao
    Yu, Jiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 419 - 432