The polynomial degree of the Grassmannian G1,n,2

被引:0
|
作者
Shaw, R [1 ]
Gordon, NA
机构
[1] Univ Hull, Dept Math, Kingston Upon Hull HU6 7RX, N Humberside, England
[2] Univ Hull, Dept Comp Sci, Kingston Upon Hull HU6 7RX, N Humberside, England
关键词
polynomial degree; subsets of PG(N; 2); Grassmannian G(1; n;
D O I
10.1007/s10623-005-4524-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a subset psi of PG(N, 2) a known result states that psi has polynomial degree <= r, r <= N, if and only if psi intersects every r-flat of PG(N, 2) in an odd number of points. Certain refinements of this result are considered, and are then applied in the case when psi is the Grassmannian G (l, n, 2) subset of PG (N, 2), N = ((n+ 1)(2)) -1, to show that for n < 8 the polynomial degree of G (l, n, 2) is ((n)(2))- 1.
引用
收藏
页码:289 / 306
页数:18
相关论文
共 50 条
  • [31] Multi-degree reduction of disk Bezier curves with G0 - and G1 - continuity
    Rababah, Abedallah
    Hamza, Yusuf Fatihu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [32] G1会所
    张海涛
    现代装饰, 2014, (12) : 110 - 113
  • [33] G1 童话
    高凡
    课堂内外创新作文(高中版), 2015, (09) : 30 - 30
  • [34] 高考G1
    蒋沛凌
    课堂内外创新作文(高中版), 2014, (09) : 26 - 26
  • [35] FOQLS AND G1
    WRAY, DO
    JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (02) : 682 - 682
  • [36] G1: Excavation
    Woo, SM
    PROCEEDINGS OF THE TWELFTH ASIAN REGIONAL CONFERENCE ON SOIL MECHANICS AND GEOTECHNICAL ENGINEERING, VOL 1 AND 2, 2003, : 1217 - 1219
  • [37] In and out of G1
    Mittnacht, S.
    Runnacles, E.
    Li, H.
    Stockwell, S.
    EJC SUPPLEMENTS, 2010, 8 (05): : 155 - 156
  • [38] Effects of G1 arrest substances on cells in the G1, S and G2 phases of the cell cycle in Tetrahymena thermophila
    Murata-Hori, M
    Fujishima, M
    EUROPEAN JOURNAL OF PROTISTOLOGY, 2000, 36 (03) : 316 - 318
  • [39] PREVENTION OF METHOTREXATE (MTX) TOXICITY BY CARBOXYPEPTIDASE G1 (CPD G1)
    CHABNER, BA
    BERTINO, JR
    JOHNS, DG
    PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, 1972, 13 (MAR): : 33 - &
  • [40] Refinable G1 functions on G1 free-form surfaces
    Karciauskas, Kestutis
    Peters, Jorg
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 54 : 61 - 73