Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation

被引:53
|
作者
Mustapha, Kassem [2 ]
McLean, William [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
fractional differential equation; nonuniform time steps; memory term; discontinuous Galerkin; error analysis; FINITE-DIFFERENCE METHOD; DISCRETIZATION; STABILITY; ACCURACY;
D O I
10.1093/imanum/drr027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a piecewise linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range -1 < alpha < 0. Our analysis shows that, for a time interval (0, T) and a spatial domain , the uniform error in L-infinity((0, T); L-2()) is of order k(rho), where rho = ming(2, 5/2+alpha) and k denotes the maximum time step. Thus, if -1/2 < alpha < 0, then we have optimal O(k(2)) convergence, just as for the classical diffusion (heat) equation.
引用
下载
收藏
页码:906 / 925
页数:20
相关论文
共 50 条