Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation

被引:53
|
作者
Mustapha, Kassem [2 ]
McLean, William [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
fractional differential equation; nonuniform time steps; memory term; discontinuous Galerkin; error analysis; FINITE-DIFFERENCE METHOD; DISCRETIZATION; STABILITY; ACCURACY;
D O I
10.1093/imanum/drr027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a piecewise linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range -1 < alpha < 0. Our analysis shows that, for a time interval (0, T) and a spatial domain , the uniform error in L-infinity((0, T); L-2()) is of order k(rho), where rho = ming(2, 5/2+alpha) and k denotes the maximum time step. Thus, if -1/2 < alpha < 0, then we have optimal O(k(2)) convergence, just as for the classical diffusion (heat) equation.
引用
下载
收藏
页码:906 / 925
页数:20
相关论文
共 50 条
  • [41] Central local discontinuous Galerkin method for the space fractional diffusion equation
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1274 - 1287
  • [42] A numerical method based on fully discrete direct discontinuous Galerkin method for the time fractional diffusion equation
    Huang, Chaobao
    Yu, Xijun
    Wang, Cheng
    Li, Zhenzhen
    An, Na
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 483 - 492
  • [43] Discontinuous Galerkin method for a distributed optimal control problem governed by a time fractional diffusion equation
    Wang, Tao
    Li, Binjie
    Xie, Xiaoping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 128 : 1 - 11
  • [44] A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition
    Huang, Chaobao
    Stynes, Martin
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 15 - 29
  • [45] Causal-Path Local Time-Stepping in the discontinuous Galerkin method for Maxwell's equations
    Angulo, L. D.
    Alvarez, J.
    Teixeira, F. L.
    Pantoja, M. F.
    Garcia, S. G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 256 : 678 - 695
  • [46] A High Order Adaptive Time-Stepping Strategy an d Local Discontinuous Galerkin Method for the Modified Phase Field Crystal Equation
    Guo, Ruihan
    Xu, Yan
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (01) : 123 - 151
  • [47] A Priori Error Analysis for Time-Stepping Discontinuous Galerkin Finite Element Approximation of Time Fractional Optimal Control Problem
    Chenyang Zhang
    Huipo Liu
    Zhaojie Zhou
    Journal of Scientific Computing, 2019, 80 : 993 - 1018
  • [48] A Priori Error Analysis for Time-Stepping Discontinuous Galerkin Finite Element Approximation of Time Fractional Optimal Control Problem
    Zhang, Chenyang
    Liu, Huipo
    Zhou, Zhaojie
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 993 - 1018
  • [49] NUMERICAL ANALYSIS OF A TIME-STEPPING METHOD FOR THE WESTERVELT EQUATION WITH TIME-FRACTIONAL DAMPING
    Baker, Katherine
    Banjai, Lehel
    Ptashnyk, Mariya
    MATHEMATICS OF COMPUTATION, 2024, 93 (350) : 2711 - 2743
  • [50] Improved local time-stepping algorithm for leap-frog discontinuous Galerkin time-domain method
    Cui, Xuewu
    Yang, Feng
    Gao, Min
    IET MICROWAVES ANTENNAS & PROPAGATION, 2018, 12 (06) : 963 - 971