Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation

被引:53
|
作者
Mustapha, Kassem [2 ]
McLean, William [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
fractional differential equation; nonuniform time steps; memory term; discontinuous Galerkin; error analysis; FINITE-DIFFERENCE METHOD; DISCRETIZATION; STABILITY; ACCURACY;
D O I
10.1093/imanum/drr027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a piecewise linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range -1 < alpha < 0. Our analysis shows that, for a time interval (0, T) and a spatial domain , the uniform error in L-infinity((0, T); L-2()) is of order k(rho), where rho = ming(2, 5/2+alpha) and k denotes the maximum time step. Thus, if -1/2 < alpha < 0, then we have optimal O(k(2)) convergence, just as for the classical diffusion (heat) equation.
引用
下载
收藏
页码:906 / 925
页数:20
相关论文
共 50 条
  • [21] hp-discontinuous Galerkin time-stepping for parabolic problems
    Schötzau, D
    Schwab, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (12): : 1121 - 1126
  • [22] A DISCONTINUOUS GALERKIN TIME-STEPPING SCHEME FOR THE VELOCITY TRACKING PROBLEM
    Casas, Eduardo
    Chrysafinos, Konstantinos
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2281 - 2306
  • [23] Time stepping in discontinuous Galerkin method
    Lai Wencong
    Khan, Abdul A.
    JOURNAL OF HYDRODYNAMICS, 2013, 25 (03) : 321 - 329
  • [24] Time stepping in discontinuous Galerkin method
    Wencong Lai
    Abdul A. Khan
    Journal of Hydrodynamics, 2013, 25 : 321 - 329
  • [25] Time stepping in discontinuous Galerkin method
    LAI Wencong
    KHAN Abdul A
    Journal of Hydrodynamics, 2013, 25 (03) : 321 - 329
  • [26] Dissipative scheme for discontinuous Galerkin time-domain method based on Verlet time-stepping
    Peng, Da
    Tang, Xingji
    Yang, Hu
    He, Jianguo
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2013, 27 (14) : 1800 - 1814
  • [27] Mixed Discontinuous Galerkin Time-Stepping Method for Semilinear Parabolic Optimal Control Problems
    Li L.
    Computational Mathematics and Modeling, 2016, 27 (1) : 95 - 121
  • [28] MIXED DISCONTINUOUS GALERKIN TIME-STEPPING METHOD FOR LINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Hou, Tianliang
    Chen, Yanping
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (02) : 158 - 178
  • [29] DISCRETE MAXIMAL REGULARITY FOR THE DISCONTINUOUS GALERKIN TIME-STEPPING METHOD WITHOUT LOGARITHMIC FACTOR
    Kashiwabara, Takahito
    Kemmochi, Tomoya
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 1638 - 1659
  • [30] A p-adaptive discontinuous galerkin method using local time-stepping strategy applied to the shallow water equations
    Li, Dingfang
    Zeng, Qingbin
    Feng, Hui
    Journal of Information and Computational Science, 2013, 10 (08): : 2199 - 2210