This paper analyzes a time-stepping discontinuous Galerkin method for fractional diffusion-wave problems. This method uses piecewise constant functions in the temporal discretization and continuous piecewise linear functions in the spatial discretization. Nearly optimal convergence with respect to the regularity of the solution is established when the source term is nonsmooth, and nearly optimal convergence rate ln(1/τ)(ln(1/h)h2+τ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \scriptstyle \ln (1/\tau )(\sqrt{\ln (1/h)}h^2+\tau ) $$\end{document} is derived under appropriate regularity assumption on the source term. Convergence is also established without smoothness assumption on the initial value. Finally, numerical experiments are performed to verify the theoretical results.
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Komaba 3-8-1, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, Komaba 3-8-1, Tokyo 1538914, Japan
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
Mustapha, Kassem
Mclean, William
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, AustraliaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
机构:
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R China
Huang, Chaobao
An, Na
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan, Shandong, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R China
An, Na
Yu, Xijun
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R China